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Introduction
In 2009, the influenza pandemic hit the United States. The H1N1 Influenza A virus was introduced and with it came world-wide panic and nearly constant media attention. This time series will analyze data for Influenza-Like Illness rates over the past six years to fit the best model. I will look at autocorrelation the autocorrelation and regression functions to determine seasonality. AR(1) and AR(2) processes will be compared, and the Durbin-Watson statistic and Box-Pierce Q statistic will be used to determine the model that gives this time series the best fit.
Data
Google.org estimates flu trends by collecting data on the number of internet searched on Influenza-Like Illness rates (ILI) per 100,000 people per week. This compares almost exactly with the Centers for Disease Control’s (CDC) weekly influenza activity estimates for countries around the world for ILIs. I will use the data published by Google.org to analyze the estimated number of ILI physician visits per 100,000 people. The data is collected weekly from 9/28/2003 to 12/06/2009.
Step 1: Model Specification

To begin this analysis, we must first specify the appropriate model. We will look at the autocorrelation functions for the series and to determine whether the series is stationary and if it shows seasonality. The mean of the actual time series itself over the 6-year time period is finite at 1737, which is one requirement of a stationary process. Looking at the graph below of the number of physician visits related to flu-like illnesses in the United States, we can see the data shows strong seasonality. 
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Below is a graph of the sample autocorrelations of the number of ILI physician visits per 100,000 people per week.  We can see the autocorrelation function drops off quickly and oscillates around zero. This result is indicative of a stationary time series. Should the results have been different here, it would have been necessary to take autocorrelations of first differences.
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Step 2: Model Estimation

It is now time to estimate the model for this time series. Because the sample autocorrelations of the original time series oscillate about zero and show strong seasonality, the AR (1) model will likely be a good fit. I will also test the AR(2) model to determine whether its fit is better for this time series. In order to determine the AR(1) model, I need to take a regression on the time series data. There are 324 data points, with one dropped in analysis due to a lag of one. The regression output was calculated using Excel data analysis on the sheet “CDC Data Regression”.  The regression analysis results in the final equation:
yt = 88.4522+ 0.9514yt-1

Adjusted R2 = 0.9057
The intercept and coefficient have very small p-values, indicating with proper significance that neither should equal one. The adjusted R2 value is very high at 90.57%. Because this value is so high in the AR(1) model, I will not include the analysis of the AR(2) model, whose regression is in the Excel file on the sheet named “AR(2) CDC Data Regression”.  Since the F and t statistics are so large, this suggests rejection of the null hypothesis that there is no relationship between lags (that the coefficient is zero).
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The residual plot of the AR(1) analysis is shown below. The residual plot suggests that while there are several extreme outliers (above 7,000), the majority of the data points are relatively close to the mean of 1737 which indicates a strong fit to the AR(1) model.
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Step 3: Diagnostic Check

We must now evaluate the model using the Box-Pierce Q Statistic and Durbin-Watson test. 
Box-Pierce Q Statistic

The Box-Pierce Q statistic tests the null hypothesis that the autocorrelation coefficients are zero.  It is approximately distributed as Chi square with K degrees of freedom.  In this project, there are 323, which is a rather large number and not located in the Chi squared distribution table, I will test with 120 degrees of freedom. The Box and Pierce statistic is 280.436 with K=119. This exceeds the Chi squared distribution value of 146.57 with 120 degrees of freedom at the 95 percentile of significance.  Thus, I can reject the null hypothesis that the residuals are a white noise process.

Durbin-Watson Test
The Durbin-Watson test is performed to test the null hypothesis that there is no serial correlation. While the Durbin-Watson statistic is not accurate for lagged regression, it can still give a feel for the presence of serial correlation. The AR(1) process has a Durban-Watson statistic of 0.7407. This statistic is significantly different from two, and thus indicates there may be positive serial correlation.  
Conclusion
This time series student project follows the step-by-step process of modeling a time series process. I used CDC data of weekly ILI physician visits per 100,000 people from 2003 to 2009 and created an autoregressive model.  Additionally, by examining sample autocorrelations I learned how to identify seasonality and indicated how to adjust for it.  Through the use of the Durban-Watson and Box-Pierce Q statistics, I determined the wellness of fit of various models. In the end, I selected the AR(1) model to describe the process due to higher R2 values, F-value, and due to the idea of parsimony.  Since the AR(1) model effectively describes our time series and is the simplest model, I chose that one. Although the model may not be perfect, as indicated by the Box-Pierce Q Statistic, it provides a good fit for this time series analysis.
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