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Time Series
Fall 2009

Introduction

The project studies the general process of a time series analysis with monthly sales data of dry white wine in Australia. In the following sections, we show the process by three parts:
1. Model Specification 

2. Model estimation

3. Model evaluation

Data investigation
The data are Monthly Australia sales of dry white wine with unit thousands of litres. The time series ranges from Jan 1990 to Jul 1995. The data can be accessed via website:
http://www.robjhyndman.com/TSDL/
Take a first sight on the data; draw the time series (base 10 log form) plot as follow:
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From the plot, we could see that the time series is fluctuate periodically, it can be interpreted that the sales figure change from season to season but almost the same pattern every year. 
In the following sections, we focus on the log-transformed (base 10) of the data since sales data are large infected by inflation or something like that, which make the time series appear constant growth in long term periods.

Model Specification

For model specification, we compute the autocorrelations and partial autocorrelations by SAS procedure “ARIMA” with the “identify” sub-procedure. The procedure gives the following outputs by “(Since the series appear no obvious trend from year to year, we just take seasonal difference of lag 12 for the original date series):
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The above charts are generated by SAS solution “Analysis -> Time series viewer” with significance level of 5%. The above charts say:

· For autocorrelations, the order 1 value is 0.195, and significantly different from 0, the lag 12 autocorrelation is -0.377; other autocorrelations are almost zero;

· For partial autocorrelations, the lag 1 value is 0.195 and lag 12 value is -0.421, which are significant and others are nearly zero;

· Since the autocorrelations fall to zero immediately after lag 1 of the seasonal differenced data, we can expect that the differenced data series is stationary.

By the value of autocorrelations and partial autocorrelations, we can specify the time series model by ARIMA with MAX AR order 12 and MAX MA order 12, the difference lag is d = 12; Here we check models: ARIMA(1, 12, 1), ARIMA(1, 12, 0), ARIMA(0, 12, 1), ARIMA(0, 12, 0) and ARIMA(12, 12, 12) with AR order 1 and 12, MA order 1 and 12 . The rationale for choosing different model can be expressed as:
· If we expect a lag effect of the differenced sales data, we should use models with auto regression terms;

· If we think the fluctuations of the differenced sales data is taken effect, we should use models with moving average terms.

Model Estimation

Model estimations are simple since SAS ARIMA procedure does all the estimations instantly. I just copy the output from SAS here.
Model #1. ARIMA(1, 12, 1)
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Model #2. ARIMA(1, 12, 0)
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Model #3. ARIMA(0, 12, 1)
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Model #4. ARIMA(0, 12, 0)
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Model #5. ARIMA(12, 12, 12), AR = 1, 12 and MA = 1, 12

[image: image8]
For the above 5 models, we screen out Model #1 since it fail to get significant parameter estimates (p-value for MA1 is 0.8652 and for AR1 is 0.4954). For the left models, the parameter estimates are all significant (Model #5 has a parameter significant on level 10%). To compare these models, we present the model std. error estimates for all models in the following table:

	
	Std. error estimate

	Model #1
	0.05445

	Model #2
	0.054295

	Model #3
	0.054348

	Model #4
	0.055205

	Model #5
	0.047463


The model #5 has the least std. error estimate for the transformed time series. So we choose the #5 model as the fitting model for this problem.
Model evaluation

At the beginning of model evaluation, we check the normality for the residuals of model #5; the test result can be expressed as:


[image: image9]
The four different normality test method show different p-values, which are 0.1174 for Shapiro-Wilk test, 0.1433 for Kolmogorov-Smironov test, 0.0444 for Cramer-von Mises test and 0.0606 for Anderson-Darling test, since for significance level 5%, we can’t all reject the normality test, so we accept the normality assumption for the residuals.

For model evaluation section, we compare the real time series with the forecasted time series, log transformed and original data.
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Figure 1 Base 10 log transformed sales data
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Figure 2 Original sales time series
From the fitted and real time series charts, it is obvious that the forecasts capture the seasonal fluctuations in the time series. But we can also see there is increasing trend in the series variance, it may not affect the parameter estimation biasness but decreases the efficiency of the model estimation. It also can be found that for some large fluctuations, the ARIMA model fail to get the sharp fluctuations; it may be the weakness for the ARIMA model, since it is based on the stationary assumption for the time series which require the fluctuations are the same for all time periods.
Conclusion

In the student project for time series, we model the month sales data of dry white wine with ARIMA model for the log (base 10) transformed data. In order to eliminate the season fluctuations in the time series, we first take the logarithm on the data and then apply a lag 12 difference, which make the time series a stationary one. To specify the best model for the problem, we examine the autocorrelations and partial autocorrelations for the transformed data series and post 5 alternative models. Finally, by check parameter estimates and Std. error estimates, we decide a model with AR order 1 and 12, and MA order 1 and 12 is the best suited model for this situation. In the last section of this project, this article check the normality of the residual, which indicate the residual is conform to the normality assumption, the real and forecast time series charts also show the model capture the seasonal fluctuations for the sales data in both log transformed form and original form.






                                       Tests for Normality





                     Test                  --Statistic---    -----p Value------





                     Shapiro-Wilk          W     0.987341    Pr < W      0.1174


                     Kolmogorov-Smirnov    D     0.058789    Pr > D      0.1433


                     Cramer-von Mises      W-Sq  0.130543    Pr > W-Sq   0.0444


                     Anderson-Darling      A-Sq  0.723123    Pr > A-Sq   0.0606





Conditional Least Squares Estimation





                                             Standard                 Approx


                Parameter      Estimate         Error    t Value    Pr > |t|     Lag





                MU            0.0086123     0.0009724       8.86      <.0001       0


                MA1,1           0.21235       0.06295       3.37      0.0009       1


                MA1,2           0.75577       0.06625      11.41      <.0001      12


                AR1,1           0.40148       0.09672       4.15      <.0001       1


                AR1,2           0.18481       0.09893       1.87      0.0635      12








Conditional Least Squares Estimation





                                             Standard                 Approx


                Parameter      Estimate         Error    t Value    Pr > |t|     Lag





                MU              0.01142     0.0041731       2.74      0.0068       0





                                Conditional Least Squares Estimation





                                             Standard                 Approx


                Parameter      Estimate         Error    t Value    Pr > |t|     Lag





                MU              0.01146     0.0048674       2.35      0.0197       0


                MA1,1          -0.18583       0.07472      -2.49      0.0138       1





Conditional Least Squares Estimation





                                             Standard                 Approx


                Parameter      Estimate         Error    t Value    Pr > |t|     Lag





                MU              0.01149     0.0050951       2.25      0.0254       0


                AR1,1           0.19570       0.07462       2.62       0.0095       1





                                Conditional Least Squares Estimation





                                             Standard                 Approx


                Parameter      Estimate         Error    t Value    Pr > |t|     Lag





                MU              0.01150     0.0051808       2.22      0.0277       0


                MA1,1           0.06675       0.39246       0.17      0.8652       1


                AR1,1           0.25978       0.38021       0.68      0.4954       1








