WNP White Noise Process
WNP may have any mean, including zero

WNP, mean of 1st differences is zero, their absolute value may be large

WNP has constant variance

WNP has no memory

RW Random Walk

RW has no mean

RW has high sample autocorrelations

RW is not stationary
Variance of forecasts with RW increases without bound

RW has infinite memory, effect of temporary shock will be permanent

Simple RW: Forecast any periods ahead is just last value, but standard error of forecast increases with the square root of L.

RW w/ Drift D: expected forecast l periods ahead = last value, yt, + l * d; the standard error same as without the drift increasing with square root of l (forecast linear with l)
RW has two parts: deterministic (drift) & stochastic (volatility)

Random draw is white noise.  A RW = previous period value + the random draw.  Period-to period change in RW is WNP
Simple MA (non-stochastic) is average of past values.  Add an error term, get an AR model. MA stochastic process is a constant plus a combination of past error terms.
For Exponential-Weighted Moving Average, the l-period forecast is same as 1-period forecast

MA affected by previous ERROR terms while AR affected by previous VALUES

AR Autoregressive Process

AR has infinite memory

If absolute value of φ1 is >= 1, not stationary
AR (1)

The mean reversion is proportional [further yt now from mean, further next will move toward mean {expectation}]

Stochastic term is constant, may move away from mean

Larger the deterministic movement toward the mean is, the less likely it will be offset by stochastic movement

E[yt]= δ / (1- φ1) if  | φ1|<1
Var[yt]= σ2 / (1- φ12)

Cov[yt yt-s]= σ2 / (1- φ12) * φ1s
ρs= φ1s
| φ1|<1 ( convergence
φ1<0 ( oscillation
φ1>0 ( decay
Et[yt+j]= δ (1+ φ1+ φ12+…+ φ1j-1)+ φ1j yt
MA Moving Average Process

Memory equals its order

Mean: μ=δ (mean does not depend on parameters)
MA (1)

If absolute value of θ1 <1, it’s invertible

For invertible MA (1) model,  ρ1 and θ have opposite signs 

ARMA (p,q)

Mean: μ=δ/(1- Σφ)
Only autoregressive coefficients affect the mean 
ARMA (p,q) described by p+q+2 parameters [variance of error and δ as well]
ARMA estimates of σ

· given ARMA w/ s.e. σ and forecast and observed value for next period, determine the min and max bounds for the new estimate of σ

· Max: previous sum of squared error + new squared residual

· Min: previous sum of squared error

· Add one to DOF for bounds of σ

After first q periods, ARMA (p,q) process has properties of an AR (p) process

Variance of error term in ARMA does not affect the size of the autocorrelations

Size of the first autocorrelation depends on φ1– θ1
Autocorrelations dampen by factor of φ1
ARIMA 

Exam use ARIMA (1,1,0) (0,1,1) or (1,1,1)

Process:

· take differences to convert ARIMA to ARMA

· values of parameters for ARMA model of differences not original ARIMA

· ARIMA not stationary

· ARIMA does not have mean or variance

· Integrate ARMA process for forecasts of ARIMA process

· ARIMA residuals are the residuals of the ARMA process of first differences

· Mean of ARMA process of 1st differences is drift of ARIMA process

ARIMA (1,1,0) is AR (1) model w/ final step to integrate 
Has 3 parameters: μ, δ and φ1
ARIMA (0,1,1) is MA (1) model w/ final step to integrate

The deterministic part of the original time series is linearly:

Increasing if mean of 1st differences is positive

Decreasing if mean of 1st differences is negative

Each error term has variance of σ2. Variance with lag = :

1-period: (1- θ1)2 σ2
k-period: [1+(k-1) (1- θ1)2] σ2
Forecasted first difference = forecasted value in period t minus actual value in t-1 ?
Residual for first differences = residual for original time series: actual @ T – Projected @ T

Stationarity [STS = stationary time series]

For STS, always true γ0 >= γ1 For STS, variances of all elements the same, so no covariances can exceed variance

For STS, mean and variance constant, so variance = covariance/autocorrelation

STS show mean reversion – forecasts eventually move toward mean as lag increases

Variance for STS is finite (bounded)

AR, increases asymptotically to finite bound

AM, increases first q periods then level

STS show mean reversion: if current value not mean, forecasts eventually move toward mean
AR (p), mean reversion delayed up to p-1

MA (q) can move away from mean at most q periods

ARMA (1,1) with negative φ1 oscillates [θ1 and mean not relevant].  Even higher order ARIMA with large (larger than the positive φ1) and negative φ1 oscillate

Autocorrelation Function [sample AF too]

WNP’s autocorrelations approximately normal (0, constant variance)

MA (q) has white noise autocorrelations for lags q+1 or higher

Stationary AR (p) has geometrically declining autocorrelations for lags p+1 or higher

Non-stationary TS have autocorrelations that don’t drop off
If sample AF of TS does not fall off quickly as k increases, probably non-stationary [quickly = at least geometric]

Sample AF = observed values, not derived

Examine SAF to determine order of homogeneity

Autocorrelation = covariance/variance

Form CORRELOGRAM with sample autocorrelations of observice TS

Filter Representation

Convert AR parts of ARIMA to MA in order to express the future values as a function of past error terms since these have identical variances and are independent, making the computation of the variance of forecasts easy.

AR: uses φ parameters to relate future time series values to past time series values. Parameters with infinite memory so random fluctuation in T will affect all future periods

MA: uses θ parameters to relate future time series values to past residuals. Parameters with finite memory so random fluctuation in T will only affect q future periods

Convert any φ parameter to infinite series of θ parameters and represent with ψ parameters

Note: ψ parameters have opposite sign of θ parameters

General Form of filter representation:
Yt-μ = ψ0εt + ψ1εt-1 + ψ2εt-2 + ……..

· Converts TS to mean of zero.  Get values of original TS from this by adding the original mean

· If TS has only MA parameters: ψj= θj
· ψ0 = 1 for all ARIMA models

AR (1)

· ψ0 = 1

· ψ1 = φ1
· ψj = (φ1)j  
ARMA (1,1)

· ψ0 = 1 

· ψ1 = φ1-θ1
· ψj = (φ1-θ1)j-1φ1
AR (2)

· ψ0 = 1

· ψ1 = φ1
· ψ2 = (φ1)j + φ2 

BACKWARDS Operator Notation for ARIMA

φ(B)Δdyt = φ(B)wt + (B)εt

εt = θ-1(B)φ(B)wt
This equation is NON-linear in parameters if TS includes any MA, linear if ALL AR

Conditional log-likelihood function called conditional because depends on past values of w and ε.
Parameter Estimation:

AR uses multiple linear regression since values for any period depend on lagged values

MA uses non-linear regression since values depend on lagged residuals


DIAGNOSTIC TESTING

After fitting a ARMA (p,q) model to a time series, check if specified correctly:

· Compare ACF for the simulated series with SAMPLE ACF of original series.  If materially different, ARMA process may not be correctly specified

· If ACF of the ARMA process is similar to sample ACF, compute residuals of the model.  If specified correctly, residuals should resemble a white noise process.

· Model correctly specified: residual autocorrelations are uncorrelated, normally distributed RVs with mean 0 and standard deviation (1/T)0.5, where T is the number of observations in the time series. 

· Box-Pierce Q-Stat. Q=T Σ řk2 over the k lags
· Is approximately χ2 with (k-p-q) DOF

· As T increases, the sum of squared errors of the time series increases proportionally to T-p-q, so roughly proportional to T
· The expected variance of the TS doesn’t change as T increases, unbiased

· As T increases, the variance of sample autocorrelations decreases in proportion to 1/T if the residuals are a white noise process

· Large values of Q ( reject Ho: no autocorrelation

· B-P Q does not work well for small samples

· More observations increase the Q-stat, making it more likely to reject the null of independence of residuals.  This is balanced because with more observations each sample autocorrelation becomes closer to the true autocorrelation which is zero is the residuals are independent

Optimal ARIMA model has lowest squared error for its forecasts. 

Minimizing the mean-squared forecast error is the same as maximizing the conditional log-likelihood function if the error terms are normally distributed

FORECASTS

ARIMA (1,1,0) ( Δyt,=δ + φ1Δyt-1+ εt-1
· Determine most recent value of first differences
· Convert forecast of time series to forecasts of 1st differences

· Find parameter φ1 from 1-period ahead forecast

· Solve 2-period ahead forecast with equation

· Convert forecast of 1st differences for two periods to initial time series

ARMA (1,1)

Can derive δ with μ = δ/(1- φ1) or:

ŷt(l)=μ+ φ1l(yt-μ) – φ1l-1θ1εt [error hat]
MA forecast values depend on mean, past residuals and MA parameters [past values don’t affect]

AR (1)

δ = μ(1- φ1)

yt -μ = φ1 (yt-1 –μ) + εt
· difference from mean shrinks each period by constant proportion

· actual value is then distorted by random fluctuation εt
· this “shrinkage from the mean” called mean reversion

· implies forecasts get closer to mean as the forecast interval increases

· NOT that actual values get closer to mean

Difference from mean technique: 1. subtract mean from given values 2. derive forecasts 3. add back mean
Given current value and any forecast: φ1n=[ŷt(n) - μ] / [ŷt - μ]

Given any two forecasts: φ1n-m=[ŷt(n) - μ] / [ŷt (m)- μ]

Forecast VARIANCE 
Since Forecasts are RVs, they have standard error

Standard Error of Forecasts indicate whether a high or low future value reflects random fluctuations or a mistake in the forecast

Variance of n+1 period forecast >= variance of n period forecast
Variance of MA depends on q residuals, so variance increases from periods 1 to q as the number of unknown residuals increases.  Thereafter, remains level

Variance of AR forecasts increase for all periods [infinite memory]

Forecast error > variance of error term unless parameters of model known with certainty. Then equal.
E[et2(k)] = (1+ψ12+ψ22+..+ ψk-12)σ2
Process: 
1. convert ARIMA ( filter 

2. compute variance as (1+ψ12+ψ22+..+ ψk-12)σ2
3. if MA [only] ψ parameters are negative of θ parameters, θ parameters are negative of MA coefficients, so  ψ coefficients same as MA coefficients
Standard deviation (or variance) of the forecast error one period ahead is the standard error (or variance) of the time series itself for ANY ARIMA process.

2-period ahead Variances:

AR (1): (1+ φ12) σ2
MA (1): (1+ θ12) σ2
ARIMA (1,1): [1+( φ1-θ1)2] σ2
Confidence Intervals for Forecasts

Confidence intervals get wider as lag increases

Either reach or approach maximum for ARMA

Become infinitely wide for ARIMA

Middle of confidence interval EVENTUALLY move towards the mean of the time series
For ARMA processes where φ1= θ1, the width of the confidence interval is the same for 1 and 2-period ahead forecasts
AR (1)

High φ1, CI becomes wider as forecast lag increases and center of CI does not move much

Low φ1 (near 0), CI stays about the same width as forecast lag increases and the center of the CI moves rapidly to the mean

Center of CI is μ + φ12k

SUM of Squares Function

· often start w/ second period

· S(θ1)=Σεt2 [error term estimates] over n

· Get the θ1 that minimizes this function

· εt2 is (actual – forecasted)2
· DOF = T-p-q

3 Types of error: model specification error, parameter error and process error

· we minimize: model specification and parameter

· we measure process error

Critical values of Dickey-Fuller increased because of serial correlation


Yule-Walker: 
Use to obtain estimates of autoregressive parameters

MA(1)
γ0 = σ2 (1+ θ12)
γ1 = σ2 θ1
γ2 = 0

θ1= [-1 ± √(1-4 ρ12)] / [ 2 ρ1 ]
· as θ1 ( 0, ρ1 ( 0

· as θ1 ( 1, ρ1 ( -0.5

· as θ1 ( ∞, ρ1 ( -1

Y-W slightly biased for small samples ( sample autocorrelation functions being biased downward from true autocorrelation function

Y-W also doesn’t use all available info
Bartlett’s Test

Null: ρk = 0 alt: ρk <> 0

Use a separate test at each value of k

ρk [hat] =Σ [(yt – μ) (yt+k – μ)] / Σ[(yt – μ)2]
z= ρk [hat] * T0.5
