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Introduction
For my student project, I chose to look at time series data for the monthly production of chocolate.  I wanted to choose a topic that was somewhat interesting to me, and chocolate is one of my favorite things to eat!  Throughout the student project, I used several of the techniques that I learned through the readings and homework assignments of the Time Series course.  Three things I focused on from the course were stationarity, seasonality, and ex-post forecasts.
Data Source
The data I used came from a time series data library http://www.robjhyndman.com/TSDL/.  I chose the Production category and selected CHOC.DAT.  The data contained the monthly production of chocolate in tonnes in Australia from July 1957 to August 1995.  This turned out to be more data points than I needed so I decided to use only the data from 1980 to 1989.  Since I wanted to look at an ex-post forecast, I reserved the data points after from January 1990 on to compare the actual values to the forecasted values.
Time Series Techniques

Once I decided which data points to consider as part of the time series, the first thing I did was graph the points to see if I could gather any useful information from a visual representation.
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There appears to be a long-term upward trend which means that this time series is not stationary.  A stationary series is invariant with respect to time.  The mean, variance, and covariance must all be invariant with respect to time in a stationary series.  Since there is an upward trend the mean will increase over time.  There also appears to be cyclical behavior, possibly annual seasonality.  I looked at the graph of the sample autocorrelations to gather more information.  This graph is called a correlogram.  The calculations for the sample autocorrelations can be found on the ‘Selected Data’ tab of the excel workbook.
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Peaks in the sample autocorrelation function at k = 12, 24, 36, etc. indicate annual seasonality.  This means there is a correlation between points that are twelve months apart.  

While it is evident from the graph of the autocorrelation function that the series is not a white noise process, I performed the Bartlett Test to show this statistically.  In a white noise process, the sample autocorrelation coefficients are approximately normal with a mean of 0 and a standard deviation of 1/(T)^.5.  Several of the sample autocorrelations are greater in magnitude than (1/(120)^.5)*1.96 = .18, so we can be 95% sure that the true autocorrelation is not zero. 
Since the original time series does not appear to be stationary, I examined the autocorrelation functions of the first and second differences of the series as well as the differences of logs of the series to see if these showed signs of stationarity.  Through the course readings, I learned that an autocorrelation function that quickly drops to zero as the lag k increases can indicate a stationary series.
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Not only did these graphs show no signs of stationarity, they all showed the same annual seasonality as the autocorrelation function of the original series.  It became evident that I had to make some sort of adjustment for seasonality.  The text book mentions a few ways to adjust for seasonality; I decided to follow the method of creating a new series zt = yt - yt-12.  This is probably a more simplified model than what is necessary as zt will only take into account annual seasonality, but the graph of the autocorrelation function of the original series strongly indicates annual seasonality in the series so I felt this was an appropriate adjustment.
Once I had a new series, I examined its autocorrelation function.  I cannot say with certainty that zt is stationary, but it does exhibit some characteristics of stationarity.  One positive aspect of the correlogram is that it appears that the seasonality has been removed in large part.  I looked at the autocorrelation function for the first differences of zt to see if there was any improvement- there was no improvement so I decided to stick with zt as my model.
The values of the new series zt along with the calculations of the sample autocorrelations can be found on the ‘zt = yt - yt-12’ tab and the ‘First Differences of zt’ tab of the excel workbook.
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The next thing I wanted to do was specify the model so I could perform an ex-post forecast.  I considered three simple models: AR(1), AR(2), and MA(1).  I used Yule-Walker equations to estimate the parameters, summarized in the table below.
	Model
	Equation
	Yule-Walker Equations
	Parameter Estimates
	Solving for δ
	Final Equation

	AR(1)
	zt = Φ1zt-1 + δ +εt
	ρk = Φ1k
	Φ1 = .0590
	μ = 365.2037 = δ/(1-Φ1)
δ = 343.6567
	zt = .0590zt-1 + 343.6567 +εt

	AR(2)
	zt = Φ1zt-1 + Φ2zt-2 + δ +εt
	ρ1 = Φ1/(1 - Φ2)
ρ2 = Φ2 + Φ12/(1 - Φ2)
	Φ1 = .0455
Φ2 = .2293
	μ = 365.2037 = δ/(1-Φ1-Φ2)
δ = 264.8457
	zt = .0455zt-1 + .2293zt-2 + 264.8457 +εt

	MA(1)
	zt = δ +εt - Θ1εt-1
	ρ1 = -Φ1/(1 - Φ12)
	Θ1 = -.0593
	μ = 365.2037 = δ
	zt = 365.2037 +εt + .0593εt-1


Based on the graph of the autocorrelation function, I ruled out MA(1) as the best model since all of the autocorrelations greater than lag 1 are not equal to zero.  For an AR(1) model, the autocorrelation function begins at one and declines geometrically so I rules out AR(1) as well.  The graph of the autocorrelation function does show certain characteristics of an AR(2) model; the autocorrelation of an AR(2) model is an oscillating, sinusoidal function that is geometrically dampened as the lag k increases.  This seemed to be the most appropriate choice of the three models I considered. 
I used the AR(2) model and the parameters estimated by the Yule-Walker equations to forecast the next values of zt.  Since zt is the difference of yt and yt-12, I needed to “undifference” the forecasted values of zt to get the forecasted values of yt.  The forecasted and undifferenced values can be found in the ‘Forecast zt’ tab of the excel workbook.  I ended up with forecasted values of chocolate production for each month in 1990.
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Conclusion
Although the forecast is not perfect, it reflects a lot of the movement of the actual values.  Creating a new series zt only accounted for annual seasonality, but there was likely other cyclical behavior that this model did not capture.  I conclude that while the AR(2) model was the most appropriate model to use of the three I considered, there probably exists a better, more complicated model that would provide a more accurate forecast.
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