Using Time Series to predict Future Birthrates in the United States

I examined birthrates per 1,000 people per year to see if it was possible to use past birth rates to model future birth rates.  I downloaded the birthrates in the United States from 1909 to 2007 from the Center on Disease website (www.cdc.gov).  I chose birthrates for my project since they are an interesting statistic and often a good indicator of economic and social attitudes of the population.  For instance, one would expect birthrates to decline in the current economic recession, due to people’s financial situation and outlook.  In addition, they are also useful to government officials who create policy so that they can prepare for expected population changes. 

DATA 

 A necessary condition for time series modeling is that one must first have a stationary data set.  A stationary process is defined a data set whose distribution and conditional distribution both are invariant with respect to displacement in time(constant variance and mean).  An easy test to determine stationarity is to examine the sample autocorrelation  function of a data set.  If the correlation of lag k falls off quickly toward 0 as k increases, it indicates that the series is stationary.  The following is the sample autocorrelation function for birth rates from 1905 to 2005:
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As it can be seen, the series crosses zero after 43 lags but does not approach 0 quickly.  Therefore I concluded that the data set was not stationary.  Next, I examined the first differences of the data set, since this is a common approach to transform a data to stationary.  The following is the sample autocorrelation of the first differences.
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As lag k increases, the autocorrelation function approaches 0 but it does not so quickly.  Since there is great fluctuation in the graph I concluded that there are at least 2 separate time series included in the graph.  Based on the autocorrelation function above and the fluctuation seen in the first 25 lags, I judgmentally decided to truncate the data at 1935.  In addition, due to the fact that the baby boom era had such a large effect on birth rates in the United states I decided to split the data into two segments, data prior to the end of the baby boom era (1935 to 1964) and data after the baby boom era (1965 to 2005).    

1935 to 1964

The correlogram of the first differences is shown below for 1935 to 1964.  As can be seen by the graph, as k increases the autocorrelation quickly declines and fluctuates approximately between -.1 and .1.  This indicates that the data for this time period may be stationary.  
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1965 to 2005

The correlogram of the first differences is shown below for 1965 to 2005.  As can be seen by the graph, as k increases the autocorrelation quickly declines but there is a greater degree in fluctuation of the autocorrelation than there was in the prior time period.  It is not as clear from this graph if the series is stationary, so statistical tests will need to be performed to determine if it is stationary.  
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Model Estimation and Diagnostic Checking

The data for both time periods was fit to an ARIMA (1,1,0) and ARIMA(2,10) time series using the equations:

  yt = φ1yt-1 + δ + εt

 yt = φ1yt-1 + φ2yt-2 + δ + εt
Where  εt is white noise with mean 0.  

 1935 to 1964

For pre baby boom time period, fitting the equations above using least squares regression resulted in the following equations:
  yt = .2171yt-1 + -.0935 + εt

 yt = -.1198yt-1 + .3243yt-2 + -.5146+ εt
Since  |φ1 |<1 for the first equation and  |φ2+φ1| <1, the data supports the conclusion that the series is stationary.  The mean of the ARIMA (1,1,0) model is -.0935 and has an adjusted R-squared of .010029.  This suggests that the model does not do a good job of fitting the data.  The mean of the ARIMA(2,1,0) is -.1006 and has an adjusted R squared of .2367 which is a big improvement over the ARIMA (1,1,0) model.

After the model has been parameterized, the next step is to test the model for white noise.   If the model is correctly specified, then for large displacements k, the residual autocorrelations are themselves uncorrelated, normally distributed random variables with mean 0 and variance 1/T.  The Box Pierce test can be applied to see if this is true and thus test for white noise.  Additionally we can also look at the Durbin Watson Statistic.  A Durbin Watson statistic of 2 indicates no serial correlation among the residuals.  This would imply that the residuals are white noise.  Below are the results from the 1935 to 1964 data:




DW STAT

BOX-PIERCE Q
(k=20) 

CRITICALVALUE(10%)

ARIMA(1,1,0)

1.7787


19.20



27.2037


ARIMA(2,1,0)

1.9399


8.593



25.989

As can be seen by our results and the adjusted R squared discussed above, the ARIMA(2,1,0) is a better fit for the data.  This can be seen in the DW statistic that is closer to 2 and our much lower Box-Pierce Q statistic.  Since our Q statistic is less than our critical value we fail to reject our hypothesis that the residuals are not a white noise process.  Please note that the Q statistic has a chi-squared distribution with k-p-q degrees of freedom.  The above process was repeated for 1965-2000.

1965 to 2000

When completing the regression for the later time period it was judgmentally decided to include only the birthrates up until 2000 so that I would have data to test the ex post forecasts of the model.  For 1965 to 2000 fitting the equations above using least squares regression resulted in the following equations:
  yt = ..4588yt-1 + .0475 + εt

 yt = .5865yt-1 + -.2762yt-2 + .0711+ εt
Since  |φ1 |<1 for the first equation and  |φ2+φ1| <1 the data supports the conclusion that the series is stationary.  The mean of the ARIMA (1,1,0) model is .0877 and has an adjusted R-squared of .20488.  This again suggests that the model does not do a good job of fitting the data.  The mean of the ARIMA(2,1,0) is -.1006 and has an adjusted R squared of .221367 which is a marginal improvement over the ARIMA (1,1,0) model.  If the additional parameter does not add significant value to the estimation of the time series it is prudent to choose the ARIMA(1,1,0) model

Below are DW Statistic and Box-Pierce statistic for the 1965 to 2000 data:




DW STAT

BOX-PIERCE Q
(k=20) 

CRITICALVALUE(10%)

ARIMA(1,1,0)

1.7578


8.9333



27.2037


ARIMA(2,1,0)

2.035


6.39774


25.989

As can be seen by our results and the adjusted R squared discussed above, the ARIMA(2,1,0) is a better fit for the data.  This can be seen in the DW statistic that is closer to 2 and our lower Box-Pierce Q statistic.  Please note that the Q statistic has a chi-squared distribution with k-p-q degrees of freedom.  Since our Q statistic is less than our critical value we fail to reject our hypothesis that the residuals are not a white noise process. 

Model Evaluation

Now that we have specified our model we need to test the model for its ability to model future values.  In order to do this we conduct ex post forecasts which forecast birth rates for years in which we know that actual values.  We then compare the actual results to the modeled results to determine the goodness of fit.  Below are the ex post forecasts for the two time periods:

	
	Actual
	Forecasted
	Differences^2

	
	1st differences
	ARIMA(1,1,0)
	ARIMA(2,1,0)
	ARIMA(1,1,0)
	ARIMA(2,1,0)

	1963
	0.7
	
	
	
	

	1964
	0.6
	
	
	
	

	1965
	1.7
	0.82742
	0.87478
	0.76140
	0.00224

	1966
	1
	0.50627
	0.49185
	0.24377
	0.00021

	1967
	0.6
	0.32275
	-0.04659
	0.07687
	0.13641

	1968
	0.2
	0.13924
	-0.08784
	0.00369
	0.05156

	1969
	-0.3
	-0.09016
	-0.27061
	0.04403
	0.03256

	TOTAL
	
	
	
	1.12976
	0.22299


	
	Actual
	Forcasted
	Differences^2

	
	1st differences
	ARIMA(1,1,0)
	ARIMA(2,1,0)
	ARIMA(1,1,0)
	ARIMA(2,1,0)

	1999
	0.1
	
	
	
	

	2000
	-0.2
	
	
	
	

	2001
	0.3
	0.18512
	0.21940
	0.01320
	0.00118

	2002
	0.2
	0.13924
	0.24362
	0.00369
	0.01089

	2003
	-0.2
	-0.04428
	-0.12909
	0.02425
	0.00719

	2004
	0.1
	0.09336
	0.07448
	0.00004
	0.00036

	2005
	0
	0.04748
	0.12631
	0.00225
	0.00621

	TOTAL
	
	
	
	0.04344
	0.02583573


As can be seen by the total sum of squares for the next 5 periods, the models do a much better job at forecasting the values from 2000 to 2005 than it does forecasting the values from 1965 to 1969.   This indicates that the models for the first time period may not be reliable in predicting future values, therefore we may want to change the specification of our model. 

Conclusion

The project used various time frames from 1909 to 2007 to forecast future birth rates.  It was determined that in order to model birthrates using time series it was necessary to model two different time periods.  For both time frames we found that differencing the birthrates produced a homogenous stationary series.  The differenced series were then modeled using ARIMA (1,1,0) and ARIMA(2,1,0).  It was seen that the ARIMA(2,1,0) model fit the data better for both periods.  However, when forecasting future values the model for the first time period did not do a good job and therefore should not be used.  While we may considering using the time series from the second time frame, a more complex time series model would be needed to more accurately forecast future birth rates for the first time period.  

