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Time Series Student Project

Fall 2009
Introduction
This project will attempt to create an ARIMA model that best fits the high temperatures for Clarinda, Iowa.  The reason this station was chosen is because of its close similarity to the town I grew up in Red Oak, Iowa.  With the blizzard and unseasonably low temperatures for December 2009, I thought it would be interesting to investigate the historical high temperatures for this area.
Data
The data used for the project was obtained from the NEAS website for station 131533 for 1893 – 2005.  This data was not complete.  January 1969, December 1969, January 1970, February 1982 and August 1984 were all missing and thus removed from the data because linear interpolation between months is too large to give good data values.  There were also 77 other records with missing data.  These observations were left in, but linear interpolation was used to determine an appropriate value.  There was also one high value of -70 (which is impossible) and linear interpolation was also used to determine a more appropriate value.  All data points with a date of February 29th were also removed.  This left 41,093 data points.  Because such a long span was used for the project, the missing data should not materially affect the results.

Below are two snap shots of the raw data.  The graph shows that there is a strong seasonality pattern in the high temperatures, which should be expected in the Midwest with higher temperatures in the summer and lower temperatures in the winter.  Because of the strong seasonality, we will need to be de-seasonalize the data before creating a model.
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[image: image2.emf]Original High Temperature in Clarinda, IA for 2000-2005
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Seasonality Adjustment
First the mean high temperature was calculated for each day of the year.  For example the sum of all data points for February 1st were divided by the total number of data points for February 1st.  The graph of these are below.  As can be seen, the curve is not smooth. 
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To smooth the curve I compared a 7 day moving average, 15 day moving average, 21 day moving average, 31 day moving average, 7 day weighted moving average, 15 day weighted moving average, and a 21 day weighted moving average.  All graphs and data points are available in the spreadsheet.  I decided to choose the 7 day weighted moving average with weights of 0.05, 0.125, 0.2, 0.25, 0.2, 0.125, 0.05.  This graph was smoother than the average high temperature graph and the weights seemed more inline with what I know about the weather in this area…the temperature today is more closely related to the day before/after than 3 days before/after. 
[image: image4.emf]7 Day Weighted Moving Average
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The seasonally adjusted time series was then calculated by taking the difference in the original data and the 7 day weighted moving average.  The average for the seasonally adjusted data points was 0.000042, which was not quite zero.  To adjust for this, 0.00042 was subtracted from each seasonally adjusted data point.  After this adjustment, the mean of the seasonally adjusted data is close to zero (1.47 * 10-14).  These were the data points that were used for fitting the model and are labeled NormalizedTemp in the excel sheet data.  The same periods used above for the original data are graphed below for the seasonally adjusted.  Most of the data points are now close to zero.
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[image: image6.emf]Seasonally Adjusted 2000-2005
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Trend
The seasonally adjusted data points were evaluated for trend in the temperature.  The graph of the entire time series was evaluated for a trending increase/decrease in the 365 day moving average temperature.  There were too many data points for one graph, so I split them into two 1893-1949 and 1950-2005.  There are some periods that are higher like 1918-1938 and some periods that are lower like 1990-1997.  This could be due to multiple reasons such as change in the measurement tool, long-term cycles, or urban activity.  There is no clear trend in these averages, so adjustments to the seasonally adjusted temperature were not pursued.
[image: image7.emf]365 Day Rolling Average 1893-1949
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[image: image8.emf]365 Day Rolling Average 1950-2005
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Sample Autocorrelation 

Sample autocorrelations were calculated for the time series using all data points and 10,000 data points spread between 4 time periods using a VBA macro.  The graph below shows the first 80 lags of the sample autocorrelation of the entire data series.  The other four 10,000 point autocorrelations were also very similar to the one below.   The sample autocorrelations fall to zero as the lag gets larger.  This is an indication that the time series is stationary.  The time series is probably not a white noise process as well because the first few values are significantly greater than zero.  
[image: image1.emf]Original High Temperature in Clarinda, IA for 1900-1905
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Model Specification
The AR(1), AR(2), and ARMA(1,1) were evaluated.  Linear regression was run in excel to determine the AR(1) and AR(2) models.  The output is below.
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 AR(1):  Linear regression gives the model 
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[image: image15.wmf]Regression Statistics
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AR(2):  Linear regression gives the model  
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ARMA(1,1):  The Yule Walker equations were used to fit the parameters of this model, where 
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.   Solving these equations gives the model 
[image: image10.wmf]1

1

052

.

0

62144

.

0

-

-

+

=

t

t

t

y

y

e


Durbin-Watson Test
To test the Null hypothesis that there is no serial correlation in the residuals of the proposed models, the Durbin-Watson statistic was used.  A value close to 2.00 means there is no serial correlation.  Positive serial correlation is associated with values below 2 and negative serial correlation is associated with values above 2.  The values of the calculated DW statistic are listed below.  The AR(2) model has the value closer to two.
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Box-Pierce Q Statistic

The Box-Pierce statistic is used to test that the residual autocorrelations are uncorrelated, normally distributed random variables with mean zero and variance 1/T.  This would indicate that the residuals are the result of a white noise process.  I calculated the statistic using 200 lags (k=200).  All three models are much lower than the required chi-squared level, thus all were accepted at the 10% and 5% level.  Again the AR(2) model is the best fit of all three.
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Conclusion

I conclude that the best model to fit the high temperature of Clarinda, Iowa is the AR(2) model.  This is supported by the fact that the Durbin-Watson statistic is significantly close to 2 indicating no serial correlation and the Box-Pierce Q Statistic is lower for the AR(2) model indicating the residuals are a white noise process.
When the 7 day weighted moving  average is added back into the predicted AR(2) autocorrelation model, the results are similar to the original high temperature.  The graphs of 1900-1905 and 2000-2005 are shown below.  This further confirms that the AR(2) model is the best choice.
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[image: image12.emf]Comparison of AR(2) Predicted to Actual for 2000-2005
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