Introduction
The number of fires is a very important factor for determining a premium rate of fire insurance and my company has the largest portion in South Korea’s fire insurance market. So I decided to model the number of fires in South Korea data using time series analysis. Throughout the student project, I used several of the techniques that I learned through the reading and homework assignments of the Time Series course.
Data

The data was collected monthly from January, 1998 to the December 2005 by the Korean Statistical Information Service(http://www.kosis.kr/). There were 96 data point, enough data, for meaningful results.
Analysis of original time series

The graph of original data is shown below.

[image: image1.emf]Number of fires for 1998-2005 in South Korea

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

Jan-98

Jul-98

Jan-99

Jul-99

Jan-00

Jul-00

Jan-01

Jul-01

Jan-02

Jul-02

Jan-03

Jul-03

Jan-04

Jul-04

Jan-05

Jul-05


On first glance, I can tell that the data is probably seasonal because of the peaks and valleys we see at regular intervals, highest in the winter. This is due in part to an increase in the number of cooking and heating fires.
Below is a picture of the autocorrelations of the series.

[image: image2.emf]Correlogram for original data
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The perks and valleys here again indicate seasonality.
Adjusting for seasonality

In order to adjust for seasonality, I decided to follow the method of creating a new series zt = yt - yt-12. This is probably a more simplified model than what is necessary as zt will only take into account annual seasonality, but the graph of the autocorrelation function of the original series strongly indicates annual seasonality in the series so I thought this was an appropriate adjustment.

 Once I had a new series, I examined its autocorrelation function. Autocorrelation function zt declines only slowly, so that there is some doubt as to whether zt is a stionary series. I therefore fist-differenced this series to obtain wt=∆zt=∆(yt-yt-12). The autocorrelation function of this series declines rapidly and remain small, so that I can be confident that wt is a stationary, non-seasonal time series.
[image: image3.emf]Autocorrelation function Z(t)
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[image: image4.emf]Autocorrelation function of first differences of Z(t)
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Model specification
The autocorrelation function falls off rapidly to 0. Although the autocorrelations do oscillate somewhat at later, the series appear to remain fairly close to 0 at the end. There does not appear to be any moving average term in this data, so I will proceed with fitting AR models.
AR(1)

[image: image5.png]SUMMARY QUTPUT
Regression Stalistics
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I obtain this model : wt=-0.4957698 wt-1+11.5003417+Єt
The adjusted R square is not high.

I performed a DW test to determine if there was serial correlation. The null hypothesis is that there is no serial correlation. The statistic for the AR(1) is 2.22147, so I can conclude that I cannot reject the null hypothesis.

Additionally I ran a Box-Pierce to test the null hypothesis that the autocorrelation coefficients are 0. Q statistic was 130.59586, while the chi-square statistic at k=93, 90% significance was 109.755627. Since Q statistic is not lower, I couldn’t accept the hypothesis that the residuals form a white noise process.
AR(2)
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I obtain this model : wt=-0.664973wt-1-0.344396 wt-2+3.0900209+Єt
The adjusted R square is better on this model.
I performed a DW test to determine if there was serial correlation. The null hypothesis is that there is no serial correlation. The statistic for the AR(2) is 2.06552. This time again told me that I cannot reject the hypothesis that there is no serial correlation.
I reviewed the Box-Pierce Q statistic. Q statistic was 85.39416. The chi-square statistic at k=92, 90% significance was 107.5650082, so I accepted the hypothesis that the residuals follow a white noise process.
[image: image7.emf]Actual vs Predicted AR(1)
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[image: image8.emf]Actual vs Predicted AR(2)
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Forecasting

As a final method of analyzing the goodness-of-fit of the ARIMA models considered above, an ex-post forecast using the equation and techniques of chapter 18 was performed for the 2006~2008 and compared with the actual data.
I forecasted points inversely. : (wt→zt→yt)
[image: image9.emf]Ex-post forecast (Number of fires for 2006~2008)
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Conclusion

Although the forecast isn’t perfect, the general shape and pattern matches the actual data. I think that AR(2) is better. Because it passed all diagnostic tests (Durban-Watson and Box-Pierce Q statistics) and its ex-forecast graph is more similar than AR(1)’s.
So, I decide that the AR(2) model was the most appropriate. : wt=-0.664973wt-1-0.344396 wt-2+3.0900209+Єt
I should like to end by writing this. Time series student project has been hard work but it has been immensely rewarding and makes me take an interest in forecasting.
Thanks.
























