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Time Series Analysis of Duluth, MN Tourism

Introduction

For my student project, I attempted to fit an ARIMA time series model to some tourism data for Duluth, MN.  I grew up in the Duluth area, and I worked a job during high school and college that was affected by the amount of tourists to the area.  I had hoped to find data that exhibited a pattern of some type so that a time series model would be a useful tool for forecasting.  I thought that the number of tourists to Duluth would be highly seasonal and likely exhibit a seasonal pattern.

Data

I found monthly data on the number of tourists in Duluth, MN from January 1982-December 1993.  The website that I found the data on, as well as additional information, is http://www.seagrant.umn.edu/tourism/trends/trendst01.html.  The original data can be found on the “Tourism” tab of the spreadsheet.  I graphed the original data, and I did find that it exhibited strong seasonality.  The number of tourists to Duluth peaks around June or July every year for the years shown.  
[image: image1.emf]Number of tourists to Duluth, MN 

Jan 1982-Dec 1993

0

100

200

300

400

500

600

700

800

900

1000

Jan-82

Jul-82

Jan-83

Jul-83

Jan-84

Jul-84

Jan-85

Jul-85

Jan-86

Jul-86

Jan-87

Jul-87

Jan-88

Jul-88

Jan-89

Jul-89

Jan-90

Jul-90

Jan-91

Jul-91

Jan-92

Jul-92

Jan-93

Jul-93

Thousands


Analysis
The first thing I did was calculate the sample autocorrelations of the original data, and I graphed the correlogram.  
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Like the original data, the sample autocorrelation graph indicates seasonality.  The peaks at lags 12, 24, etc. indicate annual seasonality.

My first goal was to deseasonalize the data.  My results and calculations can be found on the “Seasonality” tab of the spreadsheet.  I first took 12-month moving averages.  I then divided each value by the moving average.  For each month (January-December), I calculated the average of those results.  The sum of those indices was slightly greater than 12 (12.02408) so I adjusted by multiplying each monthly index by 12 and dividing by 12.02408.  The resulting indices are shown below:
	 
	Seasonal indices

	Jan
	0.2253

	Feb
	0.2545

	Mar
	0.3791

	Apr
	0.4049

	May
	0.7612

	Jun
	1.4779

	Jul
	2.9529

	Aug
	2.6449

	Sep
	1.6156

	Oct
	0.7381

	Nov
	0.2876

	Dec
	0.2580


To construct the deseasonalized data set, I divided each of the values by their corresponding monthly index.  At that point, I decided to only use the data from January 1982-December 1992 in case I wanted to perform any model evaluations on the data from January 1993-December 1993.  I graphed the resulting deseasonalized data set.
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To test the stationarity of my new data, I graphed the sample autocorrelation function, and it did not have characteristics of a stationary time series.  As you can see, it did not approach zero very quickly and has a lot of spikes.
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I suspected that there may be some trend in the data, so I took first differences and graphed the correlogram.

[image: image5.emf]First Differences of Deseasonalized Data

Sample Autocorrelation

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97103109115 121127

Lag (k)

Correlation


This correlogram had more characteristics of a stationary time series.  The autocorrelation quickly approached zero by lag 2.  To test that the series was not a white noise process, I performed Bartlett’s test.  Several of the first sample autocorrelation coefficients are outside of the range of two standard deviations (2*1/(1311/2)) so we can be reasonably sure that the true autocorrelation coefficient is not zero.
I decided to fit my model to the first differences of the deseasonalized data.  I started with the four most basic ARIMA models: AR(1), AR(2), MA(1), and ARMA(1,1).  For the AR models, I used Excel’s regression add-in to estimate the parameters.  I then used the sample formulas from the NEAS website to calculate the Durbin-Watson and Box-Pierce Q statistics.  For the MA and ARMA models, I used the Yule-Walker equations to estimate the parameters.  The details of the calculations can be found on the following tabs in the spreadsheet: “AR(1)”, “AR(2)”, “MA(1)”, and “ARMA(1,1)”.  The resulting models are summarized below:

AR(1) :  
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AR(2) :  
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MA(1) :  
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ARMA(1,1) :  
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In order to evaluate the four models that I fit to the data, I examined the Durbin-Watson statistic, Box-Pierce Q statistic, and the Adjusted R2.  A summary of the statistics for each of the models is shown here:

	Summary of Model Statistics

	 
	First Differences of Deseasonalized Data

	Model
	AR(1)
	AR(2)
	MA(1)
	ARMA(1,1)

	 
	 
	
	
	 

	Adj R2
	0.1715
	0.2459
	0.2781
	0.3459

	 
	 
	
	
	 

	Durbin-Watson
	2.2098
	2.1882
	2.1889
	2.1053

	 
	 
	
	
	 

	Box-Pierce Q
	58.9532
	41.7473
	40.0038
	33.9544

	Chi-squared (90%)
	50.6598
	49.5126
	50.6598
	48.3634


Based on those three statistics, the ARMA (1,1) would be the best fitting model of the four models created.  The Durbin-Watson statistic was reasonably close to 2 so we could believe there was no serial correlation.  I used approximately 40 lags to calculate the Box-Pierce Q statistic, and it was below the chi-squared critical value.  I wasn’t happy with the very low adjusted R2, however, so I decided to abandon my previous approach, and I started over from scratch.

I went back to my original data before I had attempted to remove the seasonality.  I tried a simple autoregressive model in which I used the (t-12) value as my regressor.  I used Excel’s regression add-in once again to run the regression.  The results and calculations can be found on the “AR (t-12)” tab of the project spreadsheet.  My new model was 
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.  The summary of the model statistics showed a lot better fitting model.  The adjusted R2 increased significantly, the Durbin-Watson statistic got closer to 2, and the Box-Pierce Q statistic remained under the 90% critical value.
	 
	Orig Data

	Model
	AR (t-12)

	 
	 

	Adj R2
	0.8698

	 
	 

	Durbin-Watson
	2.0035

	 
	 

	Box-Pierce Q
	28.0674

	Chi-squared (90%)
	50.6598


I graphed the original data and the model to check how well it fit the data.  Though it wasn’t perfect, it seemed to be a better fit than the four other models.  I suspect that one of the variables that could help explain the increases or decreases from year to year would be some weather-related variable.  Further analysis could be done to determine if the temperature or the amount of precipitation in a month would affect the number of tourists in Duluth.  More advanced ARIMA models would also likely be more accurate, since my autoregressive model is extremely simplistic.
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