INTRODUCTION                                                                                                                                       

I have chosen to analyze the murder rates of California vs. the USA.  Having lived in California since birth, I’ve come to realize that the topic of which city has one of the highest murder rates in the country frequently surfaces in conversations. Of course, this conversation topic usually comes up due to over intoxication during happy hour, the supposed city varies based on which part of the state you happen to be in at the moment, and it is quite obvious that the highest murder rates belong mostly to cities outside of California.  But nonetheless, it has lead me to ponder over whether or not California has a significantly higher murder rate than the country as a whole, since this wandering topic seems to accuse a number of different cities all over the state.  

Using the yearly California and US murder rates from 1960 to 2008 per 100,000 of population, I took the absolute difference, CA murder rate – US murder rate, and used that as my data set.  The data was obtained from the website http://www.disastercenter.com/crime/.  By utilizing the techniques introduced in this course, I hope to find the most appropriate model to represent the data.
All data and statistical results can be found in the spreadsheet timeseriesproject.xls.
MODEL SPECIFICATION                                                                                                                                      

The first step in the model estimation process is to determine the order of the model that fits the data.  We do so by first checking if the series is stationary.  We can check if a series is stationary by analyzing the graph of the series itself or the autocorrelations of the series for lags up to a certain point, i.e. a correlogram.  Taking a look at the initial series,
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we see the CA murder rate stays steadily below the national murder rate up until 1974, at which point it sharply increases above the national murder rate until 1980.  After another sharp decrease, the CA murder rates stay steadily above the national rate until it starts decreasing back towards it from 1992 to 1999.  From 1999 on, the CA murder rate stays steadily above but close to the national murder rate.  From the initial data, there appears to be no long-term trend, which could be an indication of stationarity.  To analyze further, let’s look at the correlogram to see the behavior of the sample autocorrelations.
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The sample autocorrelations fall off quickly as lag k increase and is geometrically dampened.  This leads us to believe that the model is a stationary autoregressive process of lower order. Also, as there are no spikes indicative of moving average terms, we will assume that there is no moving average component.  The autocorrelation function drops steadily to -.46 by lag 20, but doesn’t remain close to zero until lag 33, which does not coincide with the behavior of a stationary AR(1) process.  The behavior for a stationary AR(1) process displays sample autocorrelations that decline geometrically to zero and stays at zero for subsequent lags.  Thus, we believe the order of the stationary autoregressive process will be greater than 1.
To assure ourselves that the initial data process is stationary, let’s look at the first differences of the series as well.
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Here the sample autocorrelations start off closer to zero and oscillate greatly around zero until lag 33, with oscillations greatest at lag 15.  It does not quickly drop off as the number of lags becomes large.  Thus, it seems reasonable to conclude that our initial data set is stationary.   The order of homogeneity and the order of the moving average component will both be zero.  The most appropriate model will be a purely autoregressive process AR(p) of order p greater than 1.
PARAMETER ESTIMATION and DIAGNOSTIC CHECKING                                                                                                                                    

Though we stated above that the model is most likely a purely autoregressive model of order greater than 1, we will include it in our analysis and compare it to the models of higher order.  Looking at autoregressive models of order p = 1, 2, 3, 4, and 5, we get the following results.
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	AR(1)
	0.91266
	
	
	
	
	0.91266
	0.87263
	0.86987

	AR(2)
	1.07305
	-0.17084
	
	
	
	0.90221
	0.87010
	0.86420

	AR(3)
	1.05527
	-0.04149
	-.11471
	
	
	0.89907
	0.86691
	0.85740

	AR(4)
	1.05419
	-0.05249
	-.07128
	-.04317
	
	0.88725
	0.86246
	0.84870

	AR(5)
	1.04154
	-0.04476
	-.08104
	0.02682
	-.06789
	0.87467
	0.85683
	0.83799


We see that for all orders, the sum of the coefficients are less than 1.  This is a necessary condition for stationarity.  The R-squared and adjusted R-Squared statistics are all fairly high, with AR(1) and AR(2) having the highest values, indicating a good fit.  Also, all values are relatively close to one another.  Thus, it appears that we’re on the right track.  Let’s continue with our analysis by looking at the Durbin-Watson statistic and the Box-Pierce Q statistic.
The Durbin-Watson statistic tests for serial correlation between the residuals.  When successive residual values are close to each other, the Durbin-Watson statistic will be low.  The statistic will lie in the range of 0 to 4, with a value near 2 indicating no first-order serial correlation.  Positive serial correlation is associated with values Durbin-Watson values below 2, and negative serial correlation is associated with Durbin-Watson values above 2.  The values for our statistical models are as follows:
	
	Durbin-Watson statistic

	AR(1)
	1.67305

	AR(2)
	2.03304

	AR(3)
	1.98803

	AR(4)
	2.01543

	AR(5)
	1.96734


The difference from 2 of the Durbin-Watson statistic value for our models of order p = 1, 2, 3, 4, and 5, are 0.32695, 0.03304, 0.01197, 0.01543, and 0.03266, respectively.  Thus, the least serially correlated models are AR(3) and AR(4).

The Durbin-Watson statistic by itself is not a valid statistical measure for a lagged regression.  Hence, we will now calculate and analyze the Box-Pierce Q statistic.  If we compute the sample autocorrelation functions for the residuals, we can use the Box-Pierce Q statistic to test for correlation between the residuals.  If the model is correctly specified, then for large displacements, the residual autocorrelations are themselves uncorrelated, normally distributed random variables with mean 0 and variance 1/T, where T is the number of observations in the time series.  
We use K = 22 autocorrelations for the Box-Pierce Q statistic at a 10% significance level, to compute the following:
	
	Critical Value
	Box-Pierce Q

statistic

	AR(1)
	29.61509
	14.64608

	AR(2)
	28.41198
	11.17725

	AR(3)
	27.20357
	10.48065

	AR(4)
	25.98942
	10.62913

	AR(5)
	24.76904
	10.78932


As we can see, for each model the Box-Pierce Q statistic is below the critical value, allowing us in each case to accept the hypothesis that the residuals are white noise.  
Based on our findings, we will choose AR(3).  Though AR(1) has the highest values for 
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, we do not choose it as the most appropriate model due to the reasoning in our earlier analysis of the correlogram, it having the highest Box-Pierce Q statistic, and its Durbin-Watson statistic being the farthest from 2.  AR(2) has the second highest values for 
[image: image9.wmf]2

R

 and adjusted 
[image: image10.wmf]2

R

, but its Durbin-Watson statistic is a greater distance away from 2 than the statistic for AR(3), in addition to it’s Box-Pierce Q statistic being significantly higher than that for AR(3).  Overall, AR(3) had the lowest Box-Pierce Q statistic, the closest Durbin-Watson statistic in terms of its distance from 2, and the third highest 
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.  There are no improvements when increasing the order to 4 or 5.
_1326566537.unknown

_1326566574.unknown

