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Objective

    Time Series analysis has been used in variety of financial data analyses to reveal cost trends. In the healthcare systems, it helps insurance companies to study medical costs and forecast future costs. In recent years medical costs have increased greatly and have been the subject of much debate.

    In this project, I decide to study medical costs in order to better understand their behavior.

Data
    I am using monthly medical cost data from the United States Bureau of Labor Statistics. Data was from Series CUUR0000SAM which can be found from website, www.bls.gov/data. This data is a city average and is not seasonally adjusted. For monthly cost analysis, I am using data from the last 30 years, from January 1980 through December 2009. For annual cost analysis, I am using data from the month of January for the years 1949 through 2009.

    First I filtered out unused data from the raw data which directly came from the website. Those unused data are average data per year and average data per half year. They are useful but not for us at this time. 

    In order to make time series analysis possible, it is necessary to begin with a stationary series of data. I started my analysis with monthly medical cost data. It is very obvious that medical costs display an upward trend from the graph of the medical cost data. Although this data series is clearly not stationary, I will apply time series techniques to see if it is homogenous non-stationary, which means that it could be transformed into a stationary series. 

    The following line chart for Monthly Medical Costs is from spreadsheet Monthly Medical Costs in my Excel work book.
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Model Specification

    After some initial research, I knew that price indexes have historically been found to grow exponentially. Hence I first transformed the data on prices into data on inflation rates. This can be done by taking natural logs of the data and then taking first differences or by taking natural logs of the ratio of each data point to the data point in the prior period. I used the second method. Then I took first differences of the series. From the graph I conclude it is stationary and the data are appropriate for our analysis.
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    I calculated the sample autocorrelation for this data series by measuring the relationship between a data point and the data points surrounding it. The following graph shows the line chart of sample autocorrelations before seasonal adjustment. It is very clear that there are spikes in the correlogram at regular intervals. The first such spike occurs at a lag of 12. It is imply that the data points are closely related to points from 12 months earlier. Similar spikes occur at all multiples of 12. There are also smaller, yet still significant jumps at 6 month intervals. Hence, we should remove the seasonal fluctuation before further analysis. 
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    In order to remove seasonal fluctuations, I first took an annual average for each period based on the 5 previous values and the 6 following values. Dividing the original values by this average gave an estimate of the seasonal and irregular components of the time series. Averaging these new values by month isolated the seasonal component. Then I weighted these values properly to make them sum to 12, achieving my final seasonal indices. Finally, a seasonally adjusted data set provided by dividing each point in my original data series by its corresponding seasonal indices.

Using my new seasonally adjusted data set, I took natural logs of the ratios between each data point and the point in the prior period. Then I took first differences to result in a stationary data series. The new sample autocorrelations are shown in the correlogram below. The correlogram is now smooth without the spikes. Therefore, this data set is after deseasonalizing data series.
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    Analyzing the graph, we observe that the absolute values of the sample autocorrelations quickly fall to zero in this data series. It illustrate that this data series is stationary. Otherwise, if they remained far from zero, that would indicate that the data series is not stationary and more work need to be done before achieving the stationary. Many data series need to be differenced multiple times to become appropriate for analysis. For this series, it was sufficient to take natural logs and first differences. Therefore, we call this data series 1 order of homogeneity.

    Now I am ready to analyze the annual medical cost data. I used the similar method to manipulate the data as the monthly data, taking natural logs of the ratio of each data point to its prior value, and then taking first differences of the result. Since annual data no seasonal factor, we don’t have to deseasonalyze data. The following graph shows a correlogram of the sample autocorrelations for the first differences of the inflation rates.
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    In order to test whether or not the behavior of a series can be attributed to white noise, I applied the Box-Pierce Q statistic to this annual data series. This is an important consideration prior to beginning any analysis. If all fluctuations in a data set are caused by white noise, an ARIMA model is not needed to explain any fluctuations. For a lag of 15, I calculated a Box-Pierce Q statistic of 32.033. This was found by multiplying the number of observations in the series by the sum of the squares of the first 15 autocorrelations. For 15 lags and a 10% confidence level, I reject the hypothesis that the residuals are white noise with a Box-Pierce Q statistic 32.033 greater than 21.064. Therefore, my 1 order of homogeneity is acceptable.

    The next step is to test the significance of adding an autoregressive term to our model to explain the series’ behavior. This means that each data point can be explained by a constant term, the value of the previous period, and a random error term. I run a regression analysis in SAS to get a constant term of 0.000207 and a coefficient for lag 1 of negative 0.053443. The following equation gives us the best estimation of the relationship.

Yt = 0.000207 - 0.053443 * Yt-1

The negative coefficient before Yt-1 is to be expected given the oscillations in the correlogram. By analyzing the residuals of this regression, found by subtracting the predicted values of the regression from the actual values, I can analyze how well the model fits the data and how accurately it can explain the behavior of the series.

    First I tested the model using the Durbin Watson statistic. The Durbin Watson statistic is calculated as the sum of the squares of first differences in residuals divided by the sum of the squares of the residuals themselves. This model has a Durbin Watson statistic of 2.0527. This must be compared to the value in the Durbin Watson table corresponding to the number of independent variables and the number of observations used in the regression. For a regression equation with 1 independent variable and 60 observations, this value is 1.55, which is lower than my calculation of 2.0527. Hence, the serial correlation is not present.

    Then I calculated the Box-Pierce Q statistic on the residuals. We know that the chi-squared distribution gives us a threshold of 21.06 with 15 lags and a 10% confidence interval. The Q statistic is 11.29, far below the critical value of 21.06. Hence, I fail to reject the hypothesis that the behavior of the series is attributable to white noise. In 10% confidence level, the residuals are explained by white noise, the fluctuations in the series should be fully explained by the model. I conclude that the model is a good fit and accurately represents the behavior of the series.

    Although it is nice that I have developed a relationship to explain the data series, it is still relatively useless unless it can be applied to forecast future values of the series. Therefore, I modify the equation given earlier to create a suitable equation to forecast the next period.

  Forecasted Yt+1=0.000207 - 0.053443 * Yt 

    Using this equation, input Yt = -0.022496775 and we have forecast Yt+1of 0.0013316. As we know, the data series being analyzed is the first differences of the natural log of the ratio of medical costs. I must back into the forecast value of next year’s medical costs. In the following equation, the variable X represents forecasted medical inflation, the natural log of the ratio of next year’s medical costs to this year’s medical costs.

                                           X- 0.025665221=0.0013316

Solving for X gives a medical inflation forecast of 0.0269968. Hence, I can have next year’s forecasted medical costs, which can be represented by the variable L.

                                           0.0269968=natural log (L/ 369.83)

Solving for L in this equation gives a forecasted medical cost for January 2010 of 379.95. The following scatter plot shows actual medical costs for years 2010. The final value, estimated from the autoregressive model, appears in line with expectations, giving us further evidence that our model is accurate.

	Scatter Plot Including 2010 Year’s Forecast
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 Conclusion

   From the above Scatter Plot, this model has been proved to be accurate and useful in forecasting future values of the series. This study can be finished in more detail, it would be interesting to include further autoregressive terms as well as introduce moving average terms to the model. From this model I worked out, I have developed a greater understanding of time series techniques as well as the behavior of medical inflation. Time series would be a very useful tool in my future actuarial job. 
