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Introduction

For my time series course project, I thought it would be interesting to analyze the annual global catch of bluefin tuna.  Data for this project consists of the annual catch of three species in aggregate metric tonnes, the northern and southern Atlantic bluefin, and the Pacific bluefin.  Heavy commercial fishing due to high demand for the fish has lead to a dramatic drop in population.  The two Atlantic species are now categorized as critically endangered, while the Pacific bluefin is listed as vulnerable by the International Union for the Conservation of Nature and Natural Resources.  I will use the annual data provided by the United Nations Food and Agriculture Organization (http://www.fao.org/fishery/statistics/tuna-catches/en) to determine the viability of using an AMIRA model to predict future catches.  

There are several key steps in the process of modeling the data.  First, we must determine if the series is stationary, or what steps are needed to produce a stationary series.  Then, we specify the AMIRA model and determine the parameters.  We then perform a diagnostic on the model to determine if the parameters are correctly specified. Finally, we use the corrected model to forecast.  
Model Specification


Data for this time series runs annually from 1950 through 2007.  For the purposes of determining the model, data from 1950 to 1999 will be used, leaving the remaining data points to use as an ex-post forecast.  The figure below shows the annual catch in metric tonnes by year through 2007.
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Since there is not obvious overall trend to the data, to determine if the time series is stationary we must look at the autocorrelation function.  The autocorrelation function for lag k is defined as follows:
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Analysis of the autocorrelations can help determine whether the data is stationary, determine any seasonality affecting the data, as well as provide intuition as to the nature of the AMIRA model best to use.  For a series to be stationary, the autocorrelations must decrease toward zero as k increases. If a time series is found to be non-stationary, first (or second if necessary) differences of the data should then be analyzed.  The graph of the sample autocorrelations is found below.
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This function tends toward zero as k increases.  There is no obvious seasonality inherent in the data.  We conclude that the time series is stationary.  The next step in the process is to determine the type of ARIMA model to use.  The autocorrelation function exhibits characteristics similar to a geometrically dampened sinusoidal series, which is indicative an autoregressive process.  Thus, we will model AR(1), AR(2), AR(3), and AR(4) and compare to determine the best model to use.
Model Specification


Data modeled using an autoregressive process has the following form:
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with the order of the model determining how many autoregressive terms are included.  Using linear regression (see the attached excel workbook), the following models are found:
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The following values for R2 and adjusted R2 , representing variance of were computed for each model:
	Model
	R^2
	Adj. R^2

	AR(1)
	0.71490451
	0.70883865

	AR(2)
	0.71861568
	0.70610971

	AR(3)
	0.74561364
	0.72786576

	AR(4)
	0.75149125
	0.72724649



The R2 and adjusted R2 values are similar for AR(1) and AR(2), as well as for AR(3) and AR(4).  Since the values for the latter two models are higher, we will focus our attention on the AR(3) and AR(4) models.

Diagnostic Check

We will use the Durbin-Watson statistic to check for serial correlation in the residuals.  Values closer to 2 imply the lack of serial correlations.  The results for the two final models are as follows:

	Model
	Durbin-Watson Stat

	AR(3)
	2.11457383

	AR(4)
	1.94039162



We will also examine the Box-Pierce Q statistic.  The Q statistic allows us to determine if the null hypothesis that the residuals are white noise can be rejected or not.  The Q statistic is the sum of the first K residual autocorrelations, and is distributed as a chi squared distribution with K – p – q degrees of freedom.  We will use the sum of the first 20 residual autocorrelations, and the results with critical chi squared values are below:
	Model
	Box Pierce Q Value
	Critical Chi^2

	AR(3)
	11.8
	24.8

	AR(4)
	10.7
	23.5



Since the Q values are less than the critical values of the Chi squared distribution, we do not reject the hypothesis that the residual values are white noise at the 90% level for both models.  The conclusion is that both models are acceptable.  

Based on the R^2 and adjusted R^2 values obtained above, only AR models of order 3 and 4 were considered.  Both models were deemed acceptable by their Box-Pierce Q statistics.  So, the Durbin-Watson stat will be used to determine the model of best fit.  Looking at the results we can see that the AR(4) model has a DWS closer to 2 than the AR(3) model, and we don’t differentiate between negative and positive serial correlation ( just the magnitude of the correlation).  So, we will use the AR(4) model as the best fit.

Model Forecast

The final step in the modeling process is to use the model determined above to make a forecast.  In order to determine the predictive power of this model we will make an ex-post forecast, comparing the model predicted values to the data from the original series from 2000-2007 which was not used in developing the forecast model.  The results of the forecast are below:
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Conclusion

Overall the forecast predicts the shape of the actual data well, but seems to be leading the actual data by a period of approximately 2 years.  This is most likely due to the moderate R^2 value obtained by the AR model.  However, the model does not appear to exhibit serial correlation, and the residuals obtained from the forecast resemble a white noise process.  

There are many factors to consider when trying forecasting the worldwide bluefin tuna global catch.  Political pressures, environmental reforms, the worldwide fishing economy, and dwindling populations among others will certainly affect the annual catches.  These external macro-factors will have altered the data in a way that a time series may not be able to model, limiting the viability of a strictly data-centric modeling approach.  However, based on the results obtained, I think that a time series model forecasting global bluefin tuna is a useful tool in the absence of external pressures and should not be immediately discounted.
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