SIMPLE TIME SERIES ANALYSIS OF CRIME INCIDENCE

I. Introduction

Crime is as old as society itself. From the biblical times to the modern age, mankind has witnessed various transgressions, most of which seem to evolve with the advancement in our civilization.

Given this long history of crime, is it then possible to discern a trend in crime incidences?  Can we use past experience to effectively predict future occurrences of crime? 

These are the questions that this paper intends to focus on. The general objective is to use time series concepts in analyzing historical accounts of crime. Known time series models are also fitted to the data in order to forecast crime incidences. 

There are definitely many other aspects to this subject that this paper cannot and will not attempt to cover. Of course, understanding crime itself, much more making predictions about it, is a complex undertaking. Thus, for purposes of simplicity and transparency, no judgements other than those related to time series are formulated, and any subsequent claims made are based purely on past data.

II. Data
The data included in the study are for years 2003 until 2009. These are monthly records of crime incidences for the entire Philippine archipelago. No distinctions are made as to the type of crime, whether these are index or non-index, or whether these are against persons or properties. The reports are considered together and the total accounts are used in the analysis. In formulating the time series models, only data from years 2003 until 2008 are utilized. The remaining five months of information are then used for comparison and validation.

III. Methodology
The autoregressive model, along with the MS Excel software, are the prime moving forces in the investigation. Add-ins such as XLSTAT and those developed by Kurt Annen are used to calculate autocorrelation functions and parameters for the 
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models. These parameters are determined using Yule-Walker equations. Goodness-of-fit statistics are also compared to choose the most appropriate time series model, given the properties of our collected sample.

IV. Results and Discussions
A. Descriptive Analysis

The time series observations are first plotted to check if any useful insights can be gleaned from the visual representation. This graph is shown as Figure 1.
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Figure 1. Monthly Crime Incidence in the Philippines

At first glance, we could say that the time series do not display any seasonality. There are obviously no recurring peaks and troughs at regular intervals. Personally, this is comforting and worrying at the same time. The idea that crime proliferates every particular month at an annual basis is not exactly a cheerful thought. Thankfully, our sample does not show this. But then again, will it do anyone any good to know that crime follows a certain yearly schedule? Off-topic musings aside, we would further verify this lack of seasonality when we examine the autocorrelogram.

Other tidbits of information pertaining to the data are presented in the following table.

	Number of Observations
	72

	Minimum Number of Incidences
	494 (December 2008)

	Maximum Number of Incidences
	1,074 (February 2005)

	Mean Number of Incidences
	811


Table 1. Some Descriptive Statistics of the Crime Incidence Time Series

B. White Noise Tests

The autocorrelation function 
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is a gold mine of information. Aside from the correlations between neighboring data points, it also provides a variety of other checks that we could use to characterize the sample.

First and foremost, it can be used to determine whether our time series is generated by white noise. This is important because for white noise processes, there is no need to formulate a model. Nothing will be better than 
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in predicting future values. How then do we use 
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 to ascertain that all our modelling efforts are not in vain? A clear indication of white noise is when the
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 is zero for all lags
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.  To test whether this is displayed in our data, we use both the Bartlett and Box-Pierce tests. 

For the Bartlett test, we verify individually if the true 
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values are zero for a particular lag. Since we have 72 observations, the quantity 
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 is given by 0.117851. Assuming 5% level of significance, the critical value is 0.230988. Comparing this with the calculated
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’s for lags 1 to 70, we have 42 sample autocorrelations which are found to be significant. These are more than half of the number of observations. Thus, we can be 95% confident that a majority of the true autocorrelations are not zero, and our time series is not white noise.

For the Box-Pierce test, the statistic 
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is equal to 321.340346, with 
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degrees of freedom.  The critical value from the 
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distribution at 5% level of significance is 79.08. Since 
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is greater than this critical value, we can reject the null hypothesis that all
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’s for lags 1 to 60 are zero. This represents a majority of the autocorrelations, and once more, we can conclude that our time series is not generated by white noise.

With favourable results from both tests, we can safely proceed with our task and attempt to fit a model to the time series of crime incidences. 

C.  Using the Autocorrelogram
The usefulness of the 
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does not stop with its calculated values and comparisons with known test statistics. We can also plot these points to form an autocorrelogram. For our sample, the corresponding plot is in Figure 2.

One characteristic we can detect from this graph is that of stationarity.  It is important for the time series to be stationary so it will not be difficult to use a simple algebraic model to represent it. Many of these models are at our disposal and we will use one of them later on.

To check for stationarity, the plot should tend to zero as the lag 
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increases. From Figure 2, the autocorrelations drop from 0.687986 to 0.087963 after just 15 lags. At lag 19, the
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assumes its first value closest to zero, 0.014969, and it then crosses the negative threshold. It remains close to zero after that and finally tapers off to values almost equal to zero at the higher lags. We can therefore conclude that our time series is also stationary.
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Figure 2. Autocorrelogram of Crime Incidence Time Series

The correlogram for the first differences are also plotted and this is in Figure 3. Again, the diagram shows that the autocorrelation function tends to zero as the lag increases.
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Figure 3. Autocorrelogram of First Differences

It was initially mentioned that the lack of seasonality will also be corroborated by the
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. If the time series is seasonal, there will be observed rises and falls in the autocorrelogram at regular lag intervals, say at 
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equal to 12, 24, or 36 for annual seasonality. From Figure 2, we could again see that this is not the case and the plot obviously does not show any cyclical behaviour. Thus, we have our second and last evidence that crime incidence is not seasonal.

Lastly, we use the
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 to determine the appropriate model for the data points. The autocorrelogram exhibits properties similar to a “geometrically dampened sinusoidal” series. Even if the autocorrelation function does not decrease in perfect geometric progression as the lag increases, it does oscillate about the 
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-axis. This feature indicates that a good model for crime incidence is an autoregressive time series model.

D. The Autoregressive Models 
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The parameters for the autoregressive models, including the constants, are computed using the Yule-Walker equations and the sample mean.  The model order 
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is initially determined by using the partial autocorrelation function
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. To test whether a particular
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is zero at a 5% level of significance, it should not exceed
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, or 0.235702, in magnitude. The model’s order is then given by the last lag at which the
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is not below 0.235702. From our data, only 
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at lag 1 is significant, indicating that an
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model should be sufficient. Nonetheless, autoregressive models of higher orders are still developed for comparison.

The derived autoregressive models are given by the following equations.
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Their autocorrelograms, plotted with that of the original time series, are also shown in the succeeding figures. As we can see, the plots for the fitted and the original models are not very much different. This indicates that we have chosen a correct time series model for our investigation.

E. Model Evaluation and Comparison

To compare the models, only three of the ten available statistics are utilized. These figures are also outputs of the XLSTAT add-in. Their formulas and derivations are no longer discussed but these may easily be obtained in any time series modelling textbooks.

The first goodness-of-fit statistic is the Mean Absolute Percentage Error or
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. This is a function of the forecast error
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. Good models give off small values for
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. The remaining two statistics are functions of the variance of residuals. These are Akaike’s Final Prediction Error 
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 and Information Theoretic Criterion
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. Both of these latter statistics consider the fact that increasing the number of parameters may “artificially” improve the fit and they provide the necessary “adjustments” in lieu of this consideration. As with
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, minimum values for 
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and 
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indicate a good model: the fit is better when the residuals are smaller.
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Figure 4. Autocorrelogram of the AR(1) Model

[image: image42.png]Autocorrelation of the AR(2) Model & the Original Series

4BPpl1535557596163656769

Lag

W ACFof AR(2) ®Sample ACF





Figure 5. Autocorrelogram of the AR(2) Model
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Figure 6. Autocorrelogram of the AR(3) Model

The values for
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, 
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and 
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of each of the 3 models are shown below.

	Statistic
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	8.68
	8.374
	8.313

	
[image: image51.wmf]FPE


	7,431.864
	7,402.891
	7,483.801

	
[image: image52.wmf]AIC


	848.742
	848.504
	849.318


Table 2. Autocorrelogram of the AR(3) Model

From Table 2, we can quickly eliminate 
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 from our choices. It does not have the minimum value for any of the considered goodness-of-fit tests. Further, the autocorrelogram of the original series, as we have mentioned, is similar to a “geometrically dampened sinusoidal” series. This characteristic is inherent only for autoregressive models of orders higher than 1. 

The 
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model has the smallest value for two out of the three statistics, 
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and
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. While 
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 has the smallest
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, it is better than 
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 by only 0.73%, based on this criterion. Thus, for the crime incidence data, we choose the 
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model as the most appropriate.

F. Forecasts

After having chosen our model, we are finally ready to use this in our forecasts. Recall that five of our original data have been reserved for this purpose. The predicted values using 
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and the actual number of incidences for January to May 2009 are tabulated below.

	Month
	Actual Value
	Predicted Value

	January 2009
	526
	588

	February 2009
	721
	633

	March 2009
	675
	674

	April 2009
	662
	704

	May 2009
	609
	728


Table 3. Ex Post Forecasts Using 
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The original series and the 
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 model are also plotted together to see how close the estimation is. This is shown in Figure 7.
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Figure 7. Fitted vs Actual Values of Crime Incidence
V. Conclusion
We were able to show that crime incidences are not seasonal, that they are not generated by white noise, and that they are stationary. Given these, we could fit a time series model and forecast future number of occurrences with a certain degree of confidence. Crime “behaviour” also showed that it would be best to utilize an autoregressive model for our forecasts. The degree of the model is initially assumed to be one, but subsequent comparisons with higher order models prompted us to choose
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. Among the three presented estimations, this has the smallest variance of residuals, outperforming the other models in two out of three goodness-of-fit statistics. To verify its predictive potential, we have used it in our ex posts forecasts. Although
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is not perfect, it does mirror the movements of the original data. 

Improvements to this investigation may include more years of data since only five years are available and are utilized for modelling. 

VI. Work file
The MS Excel work file used for the paper is attached below.
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