TS Module 12: Parameter estimation Yule-Walker equations

(The attached PDF file has better formatting.)

Use the Yule-Walker equations to derive initial estimates of the ARMA coefficients. Know how to solve the Yule-Walker equations for AR(1), AR(2), and MA(1) processes.

- A student project might also use Yule-Walker equations for MA(2) and ARMA models.
- For the final exam, focus on the equations for AR(1), AR(2), and MA(1) models.

Exercise 1.1: MA(1) model and Yule-Walker equations

An MA(1) model has an estimated ρ_1 of –0.35. What is the Yule-Walker initial estimate for θ_1 if it lies between –1 and +1?

Solution 1.1: An MA(1) model has $\rho_1 = \frac{-\theta_1}{\left(1 + \theta_1^2\right)}$

We invert the equation to get
$$\theta_1 = \frac{-1 \pm \sqrt{1 - 4\rho_1^2}}{2\rho_1}$$

We compute $(-1 + (1 - 4 \times 035^2)^{0.5}) / (2 \times -0.35) = 0.408$

The final exam uses multiple choice questions. To avoid arithmetic errors, after solving the problem, check that it gives the correct autocorrelation.

The table below shows selected MA(1) values for ρ_1 and θ_1 . Note several items:

For a given value of ρ_1 , two values of θ_1 may solve the Yule-Walker equation. The exam problem may specify bounds for θ_1 , such as an absolute value less than one. The textbook expresses this as the MA(1) model is invertible.

For an invertible MA(1) model, ρ_1 and θ_1 have opposite signs, reflecting the sign convention for the moving average parameter.

Know several limiting cases.

- As $\theta_1 \rightarrow \text{zero}, \rho_1 \rightarrow \text{zero}$
- As $\theta_1 \rightarrow$ one, $\rho_1 \rightarrow$ negative one half (-0.5)
- As $\theta_1 \rightarrow$ infinity, $\rho_1 \rightarrow$ zero

θ_1	ρ_1	θ_1	ρ_1
0.1	-0.0990	-0.1000	0.0990
0.2	-0.1923	-0.2000	0.1923
0.3	-0.2752	-0.3000	0.2752
0.4	-0.3448	-0.4000	0.3448
0.5	-0.4000	-0.5000	0.4000
0.6	-0.4412	-0.6000	0.4412
0.7	-0.4698	-0.7000	0.4698
0.8	-0.4878	-0.8000	0.4878
0.9	-0.4972	-0.9000	0.4972