TS Module 12: Parameter estimation Yule-Walker equations
(The attached PDF file has better formatting.)
Use the Yule-Walker equations to derive initial estimates of the ARMA coefficients. Know how to solve the Yule-Walker equations for $\operatorname{AR}(1), \operatorname{AR}(2)$, and $M A(1)$ processes.

- A student project might also use Yule-Walker equations for MA(2) and ARMA models.
- For the final exam, focus on the equations for $\operatorname{AR}(1), A R(2)$, and $M A(1)$ models.

Exercise 1.1: MA(1) model and Yule-Walker equations
An MA(1) model has an estimated ρ_{1} of -0.35 . What is the Yule-Walker initial estimate for θ_{1} if it lies between -1 and +1 ?

Solution 1.1: An MA(1) model has $\rho_{1}=\frac{-\theta_{1}}{\left(1+\theta_{1}^{2}\right)}$

We invert the equation to get $\theta_{1}=\frac{-1 \pm \sqrt{1-4 \rho_{1}^{2}}}{2 \rho_{1}}$
We compute $\left(-1+\left(1-4 \times 035^{2}\right)^{0.5}\right) /(2 \times-0.35)=0.408$
The final exam uses multiple choice questions. To avoid arithmetic errors, after solving the problem, check that it gives the correct autocorrelation.

The table below shows selected $\mathrm{MA}(1)$ values for ρ_{1} and θ_{1}. Note several items:
For a given value of ρ_{1}, two values of θ_{1} may solve the Yule-Walker equation. The exam problem may specify bounds for θ_{1}, such as an absolute value less than one. The textbook expresses this as the MA(1) model is invertible.

For an invertible MA(1) model, ρ_{1} and θ_{1} have opposite signs, reflecting the sign convention for the moving average parameter.

Know several limiting cases.

- As $\theta_{1} \rightarrow$ zero, $\rho_{1} \rightarrow$ zero
- As $\theta_{1} \rightarrow$ one, $\rho_{1} \rightarrow$ negative one half (-0.5)
- As $\theta_{1} \rightarrow$ infinity, $\rho_{1} \rightarrow$ zero

θ_{1}	ρ_{1}	θ_{1}	ρ_{1}
0.1	-0.0990	-0.1000	0.0990
0.2	-0.1923	-0.2000	0.1923
0.3	-0.2752	-0.3000	0.2752
0.4	-0.3448	-0.4000	0.3448
0.5	-0.4000	-0.5000	0.4000
0.6	-0.4412	-0.6000	0.4412
0.7	-0.4698	-0.7000	0.4698
0.8	-0.4878	-0.8000	0.4878
0.9	-0.4972	-0.9000	0.4972

