TS Module 19 Seasonal models basics

(The attached PDF file has better formatting.)

Time series practice problems seasonal models

*Question 19.1: Seasonal moving average process

A time series is generated by $Y_t = e_t - e_{t-12}$.

What is ρ_{12} ?

A. -1.0 B. -0.5 C. 0 D. +0.5 E. +1.0

Answer 19.1: B

The seasonal correlation is $-\Theta / (1 + \Theta^2) = -1 / (1 + 1^2) = -0.5$

(See Cryer and Chan, page 229: equation 10.1.3)

*Question 19.2: Seasonal moving average process

A seasonal moving average process has a characteristic polynomial of $(1 - \theta x)(1 - \Theta x^{12})$, with $\theta = 0.4$, $\Theta = 0.5$, and $\sigma_e^2 = 4$

What is γ_0 ?

A. 0.20

B. 0.80

C. 1.60

D. 3.20

E. 5.80

Answer 19.2: E

(P230: equation 10.2.2: $\gamma_0 = (1 + \theta^2)(1 + \Theta^2) \sigma_e^2$)

 $(1.16 \times 1.25 \times 4 = 5.80)$

*Question 19.3: Seasonal moving average process

A seasonal moving average process has a characteristic polynomial of $(1 - \theta x)(1 - \Theta x^{12})$, with $\theta = 0.4$, $\Theta = 0.5$, and $\sigma_e^2 = 4$

What is ρ_{12} ?

A. -0.50 B. -0.40 C. 0 D. +0.40 E. +0.50

Answer 19.3: B

(P231: equation 10.2.5: ρ_{12} = - Θ / (1+ Θ^2) = -0.5 / 1.25 = -0.4

*Question 19.4: Seasonal ARMA process

A seasonal ARMA process $Y_t = \Phi Y_{t-12} + e_t - \theta e_{t-1}$ has $\Phi = -0.707$, $\theta = 1.414$, and $\sigma^2_e = 4$

What is γ_0 ?

A. 2
B. 4
C. 8
D. 16
E. 24

Answer 19.4: E

See Cryer and Chan, page 232, equation 10.2.11:

 $\gamma_{0} = \sigma_{e}^{2} \times (1 + \theta^{2}) / (1 - \Phi^{2}) = 4 \times (1 + 2) / (1 - \frac{1}{2}) = 24$

The variance is the product of the seasonal autoregressive process and the non-seasonal moving average process.

*Question 19.5: Seasonal ARMA process

A seasonal ARMA process $Y_t = \Phi Y_{t-12} + e_t - \theta e_{t-1}$ has $\Phi = -0.707$, $\theta = 1.414$, and $\sigma^2_e = 4$

What is $\rho_{11} - \rho_{13}$?

A. -1.00 B. -0.50 C. 0 D. +0.50 E. +1.00

Answer 19.5: C

(See Cryer and Chan, page 232, equation 10.2.11: $\rho_{12k-1} = \rho_{12k+1} = -\Phi^k \theta / (1 + \theta^2)$

For a stationary process, $\rho_1 = \rho_{-1}$. We form the autocorrelations for the 12 months seasonal lags, and then add or subtract one month for the non-seasonal lag.

*Question 19.6: Non-stationary seasonal ARIMA process

Suppose $Y_t = S_t + e_t$, with $\sigma_e^2 = 2$ and $S_t = S_{t-s} + \varepsilon_t$, with $\sigma_\epsilon^2 = 1$

What is the variance of $\nabla_{\!\!s}\;Y_t?$

A. 1B. 2C. 3D. 4

E. 5

Answer 19.6: E

 $\nabla_{s} \mathbf{Y}_{t} = \mathbf{Y}_{t} - \mathbf{Y}_{t-s}$

 $\Rightarrow \nabla_{s} Y_{t} = S_{t} - S_{t-s} + e_{t} - e_{t-s} = \epsilon_{t} + e_{t} - e_{t-s}$ $\Rightarrow \text{ variance } \nabla_{s} Y_{t} = 1 + 2 + 2 = 5$

*Question 19.7: Seasonal AR(1)₁₂ process

A store's toy sales in constant dollars follow a seasonal AR(1)₁₂ process: $Y_t = \Phi Y_{t-12} + e_t$.

- Sales are \$10,000 in January 20X1 and \$100,000 in December 20X1.
- Projected sales are \$110,000 in December 20X2.

What are projected sales for January 20X3?

- A. \$10,000
- B. \$11,000
- C. \$11,100
- D. \$12,000
- E. \$12,100

Answer 19.7: E

- The December projection is one period ahead.
- The January projection is two periods ahead.

(See Cryer and Chan, page 241, last line; Φ = 1.1)

Note that we take logarithms and first differences to make this process stationary.