TS Module 19 Seasonal models basics
(The attached PDF file has better formatting.)
Time series practice problems seasonal models
*Question 19.1: Seasonal moving average process
A time series is generated by $Y_{t}=e_{t}-e_{t-12}$.
What is ρ_{12} ?
A. -1.0
B. -0.5
C. 0
D. +0.5
E. +1.0

Answer 19.1: B
The seasonal correlation is $-\Theta /\left(1+\Theta^{2}\right)=-1 /\left(1+1^{2}\right)=-0.5$
(See Cryer and Chan, page 229: equation 10.1.3)
*Question 19.2: Seasonal moving average process
A seasonal moving average process has a characteristic polynomial of $(1-\theta x)\left(1-\Theta x^{12}\right)$, with $\theta=0.4, \Theta=0.5$, and $\sigma_{\mathrm{e}}^{2}=4$

What is γ_{0} ?
A. 0.20
B. 0.80
C. 1.60
D. 3.20
E. 5.80

Answer 19.2: E
(P230: equation 10.2.2: $\left.\gamma_{0}=\left(1+\theta^{2}\right)\left(1+\Theta^{2}\right) \sigma^{2}{ }_{e}\right)$
$(1.16 \times 1.25 \times 4=5.80$
*Question 19.3: Seasonal moving average process
A seasonal moving average process has a characteristic polynomial of $(1-\theta x)\left(1-\Theta x^{12}\right)$, with $\theta=0.4, \Theta=0.5$, and $\sigma^{2}=4$

What is ρ_{12} ?
A. -0.50
B. -0.40
C. 0
D. +0.40
E. +0.50

Answer 19.3: B
(P231: equation 10.2.5: $\rho_{12}=-\Theta /\left(1+\Theta^{2}\right)=-0.5 / 1.25=-0.4$
*Question 19.4: Seasonal ARMA process
A seasonal ARMA process $Y_{t}=\Phi Y_{t-12}+e_{t}-\theta e_{t-1}$ has $\Phi=-0.707, \theta=1.414$, and $\sigma_{e}^{2}=4$
What is γ_{0} ?
A. 2
B. 4
C. 8
D. 16
E. 24

Answer 19.4: E
See Cryer and Chan, page 232, equation 10.2.11:

$$
\gamma_{0}=\sigma_{e}^{2} \times\left(1+\theta^{2}\right) /\left(1-\Phi^{2}\right)=4 \times(1+2) /(1-1 / 2)=24
$$

The variance is the product of the seasonal autoregressive process and the non-seasonal moving average process.
*Question 19.5: Seasonal ARMA process
A seasonal ARMA process $Y_{t}=\Phi Y_{t-12}+e_{t}-\theta e_{t-1}$ has $\Phi=-0.707, \theta=1.414$, and $\sigma_{e}^{2}=4$
What is $\rho_{11}-\rho_{13}$?
A. -1.00
B. -0.50
C. 0
D. +0.50
E. +1.00

Answer 19.5: C
(See Cryer and Chan, page 232, equation 10.2.11: $\rho_{12 k-1}=\rho_{12 k+1}=-\Phi^{k} \theta /\left(1+\theta^{2}\right)$
For a stationary process, $\rho_{1}=\rho_{-1}$. We form the autocorrelations for the 12 months seasonal lags, and then add or subtract one month for the non-seasonal lag.
*Question 19.6: Non-stationary seasonal ARIMA process
Suppose $Y_{t}=S_{t}+e_{t}$, with $\sigma_{e}^{2}=2$ and $S_{t}=S_{t-s}+\epsilon_{t}$, with $\sigma_{\varepsilon}^{2}=1$
What is the variance of $\nabla_{s} Y_{t}$?
A. 1
B. 2
C. 3
D. 4
E. 5

Answer 19.6: E
$\nabla_{\mathrm{s}} \mathrm{Y}_{\mathrm{t}}=\mathrm{Y}_{\mathrm{t}}-\mathrm{Y}_{\mathrm{t}-\mathrm{s}}$
$\Rightarrow \nabla_{\mathrm{s}} \mathrm{Y}_{\mathrm{t}}=\mathrm{S}_{\mathrm{t}}-\mathrm{S}_{\mathrm{t}-\mathrm{s}}+\mathrm{e}_{\mathrm{t}}-\mathrm{e}_{\mathrm{t}-\mathrm{s}}=\epsilon_{\mathrm{t}}+\mathrm{e}_{\mathrm{t}}-\mathrm{e}_{\mathrm{t}-\mathrm{s}}$
\Rightarrow variance $\nabla_{\mathrm{s}} \mathrm{Y}_{\mathrm{t}}=1+2+2=5$
*Question 19.7: Seasonal $A R(1)_{12}$ process
A store's toy sales in constant dollars follow a seasonal $A R(1)_{12}$ process: $Y_{t}=\Phi Y_{t-12}+e_{t}$.

- Sales are \$10,000 in January 20X1 and \$100,000 in December 20X1.
- Projected sales are \$110,000 in December 20X2.

What are projected sales for January 20X3?
A. $\$ 10,000$
B. $\$ 11,000$
C. $\$ 11,100$
D. $\$ 12,000$
E. $\$ 12,100$

Answer 19.7: E

- The December projection is one period ahead.
- The January projection is two periods ahead.
(See Cryer and Chan, page 241, last line; $\Phi=1.1$)
Note that we take logarithms and first differences to make this process stationary.

