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Introduction

For my student project I decided to analyze the monthly motor vehicle accident trend in the UK from January 1969 to January 1983 (prior to the seatbelt law, effective post January 1983).  I decided to split my data into two groups (pre/post May 1979), in order to base my forecast on the number of accidents without a seatbelt-bias.  In addition to modeling a trend for this time series analysis, I thought it would be interesting to compare the expected forecasted trend post January 1983, to see how the seatbelt law has affected the overall trend in the UK.
There are several steps needed in order to process the data.  Initially, it is necessary to determine if the series is stationary or what steps would be needed in order to produce a stationary series (i.e. first differences, etc.).  Afterwards, a time series model (AR, MA, ARMA, etc.) and its parameters are determined to be the best fit and several diagnostic tests (Durbin-Watson, Box-Pierce Q and Chi-Squared tests) were preformed to determine if the parameters were appropriate to be the “best-fit”.  Finally, the best model was then used to forecast the data.
Data

The data for this time series is measured on a monthly basis from January 1969 to December 1984 and was found on the following website: http://robjhyndman.com/TSDL/ .  Since the seatbelt law was introduced in February 1983, I have decided to analyze the data points, pre February 1983 in order to eliminate any drift in my data points.  For the purpose of determining the model, data was selected from June 1969 to May 1979 (in order to seasonally adjust the data using a 12-month moving average).  The remaining data points were then used as an ex-post forecast.  Figure 1 below shows the monthly motor vehicle accident trend in the UK from 1969 to 1983 (prior to the introduction of the seatbelt law).
Figure 1.
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Since the graph of the original data exhibited strong seasonality characteristics (peaks every December – most likely due to winter road conditions), the sample autocorrelations of the original data were calculated to observe any stationary trends (see Figure 2).
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Figure 2. Sample Autocorrelation of Original Data
Similarly to the original data in Figure 1, the sample autocorrelation graph indicates seasonality.  The peaks occur at lags 12, 24, 36, etc. and indicate annual seasonality as a trend for this time series.  It is also evident that the autocorrelation falls off quickly and is geometrically dampened and oscillating as lag k increases. 
Since the data was showing obvious signs of seasonality, the first step before analyzing any trend was to de-seasonalize the data.  My calculations can be found in the spreadsheet ‘Time Series Project – MVA Final’, on the ‘Seasonal Calc’ tab (columns F – I).  Based on the peaks in Figure 2, I calculated 12-month moving averages for results in June 1969 to May 1979.   Please see Table 1 for a summary of the seasonal indices that were used.
	Month
	Seasonal Index

	January
	1.0087

	February
	0.9033

	March
	0.9294

	April
	0.8609

	May
	0.9357

	June
	0.9145

	July
	0.9584

	August
	0.9641

	September
	0.9881

	October
	1.0673

	November
	1.1958

	December
	1.2739





         Table 1. Seasonal indices
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Figure 3. Graphical representation of the seasonal indices
After applying the seasonal indices, I graphed the de-seasonalized data with the seasonalized data to ensure that the peaks in December were smoothed out. (Figure 4)
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         Figure 4. 
Using the de-seasonalized data, I calculated the autocorrelation function and graphed the series below in Figure 5. 
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         Figure 5. 
In order to be certain that this time series was stationary, I graphed the first differences of the autocorrelation function (see Figure 6 below).  
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Figure 6.

It is evident that the autocorrelation declines rapidly and remains close to zero as lag k increases.  Therefore, this series is stationary and no seasonal trends are exhibited with the seasonally-adjusted data
Model Specification
I decided to fit my model to the deseasonalized data.  The AR(1), AR(2), AR(3) and AR(4) models were evaluated in excel using the Regression add-in to estimate the parameters.  I then used the sample formulas from the ‘Time Series Techniques’ spreadsheet (available on the NEAS website) to calculate the Durbin-Watson and Box-Pierce Q statistics.  The details of these calculations can be found on the ‘AR(1)’, ‘AR(2)’, ‘AR(3)’, ‘AR(4)’ and ‘Seasonal Calc (columns R – V)’ tabs of the spreadsheet.     
The models are shown below:

AR(1):
Yt = 644.683 + 0.635 Yt-1 + εt
AR(2):
Yt = 410.157 + 0.398 Yt-1 + 0.370 Yt-2+ εt
AR(3):
Yt = 354.956 + 0.347 Yt-1+ 0.316 Yt-2+ 0.136 Yt-3+ εt
AR(4):
Yt = 391.678 + 0.359 Yt-1+ 0.341Yt-2+ 0.168 Yt-3 - 0.090Yt-4+ εt
As part of my valuation of the four models above, I calculated the Durbin-Watson statistic, Box-Pierce Q statistic and Adjusted R-squared values.  Please see below for the summary of these stats for each of the AR models:

	Summary of Statistics:
	 
	 
	 

	Model
	AR(1)
	AR(2)
	AR(3)
	AR(4)

	Adjusted R Squared
	0.3978
	0.4745
	0.4788
	0.4762

	Durbin-Watson
	2.4706
	2.0902
	1.9663
	1.9633

	Box-Pierce Q
	57.20
	20.38
	19.24
	19.02

	Chi-Squared (10%)
	27.20357
	27.20357
	27.20357
	27.20357

	Summation of Coefficients
	0.634
	0.768
	0.799
	0.779


Since the Durbin-Watson statistic is very close to 2, it can be assumed that there is no serial correlation in the residuals of this proposed model.  A positive serial correlation is associated with values below 2, while a negative serial correlation is associated for DW values above 2.  

The Box-Pierce Q statistic helps to determine if the null hypothesis of the residuals being a white noise process can be rejected. I calculated the sum of the first 20 lags to determine the Box-Pierce Q statistic.  In the table above, it is noticeable that the Box-Pierce Q statistic is lower than the Chi-Squared critical value for all models except AR(1).
Based on the statistics above, the AR(3) model seems to be the best fit for this specific time series.  The adjusted R Squared value is the highest amongst all 4 models and the DW statistics is closest to 2 for the AR(3) model.  Since the Q value is less than the Chi-Squared critical value, we fail to reject the null hypothesis that the residuals are a white noise process.

Model Evaluation
In order to evaluate the forecasting ability of this model, we perform an ex-post forecast and compare this to the actual data from June 1979 to July 1982 (see Figure 7).  
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Figure 7.
The following graph is looking at two series: forecasted series using the optimal AR(3) model post-January 1983 and the actual data post-January 1983 after the seatbelt law was introduced.  This graph shows us that the seatbelt law has reduced the accidents (overall) in the winter seasons provided that the forecasted model is adjusting seasonality using historical indices (pre seatbelt law). 
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Conclusion
The forecast matches the general pattern and shape of the time series modeled. The selected model had the highest adjusted R-squared value, prior to decreasing and the Durbin-Watson statistic for the AR(3) model was close to 2, proving that no serial correlation was present among the residuals.  The Box Pierce Q statistic also remained under the 90% chi-squared critical value.  For the reasons listed above, it is concluded that the AR(3) model was the most appropriate forecasting model to be used for this specific time series.  
This project was helpful in learning the key concepts of the time series modeling process.  The ideal model should have a high R-squared value, no serial correlation among residuals and no serial correlation among white noise residuals.  In addition to this, the model should also be able to produce a somewhat accurate ex-post forecast that is similar to what is actually reflected in the actual data.  
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