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Introduction:

For my times series student project, I analyzed the monthly production of beer in Australia. Beer production is measured in megaliters per month. The ARIMA(p,d,q) process was used in an attempt to try and model beer production from January 1991 to September 1994. Several techniques used throughout the Time Series course were used. Key items that I focused on were stationarity, seasonality, diagnostic checking and ex‑post forecasts.
Data:

Data was collected from http://www.robjhyndman.com/TSDL/, BEER2.DAT. Although monthly beer production data was available from January 1991 thru to July 1995; only data from January 1991 to September 1994 was used to build the ARIMA(p,d,q) model. The data from October 1994 to July 1995 was used to in an ex-post forecast, where actual production values were compared to forecasted production values. The original data from January 1991 to September 1994 is shown graphically below. This data is located in the excel worksheet under tab Original Data (Correlogram). Monthly beer production is denoted by Yt.
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From the plot of Yt, seasonality seems to be present in the original series. Peaks occur every 12 months (ever November). Seasonality is even more evident from the plot of the autocorrelation function of Yt (shown below), where strong peaks occur at k = 12, 24, 36. A possible explanation for the increased production every November is an increased consumption of beer during the holiday season (ie. Christmas and New Years), one month later.

[image: image2.emf]Autocorrelation Function of Y

t

-1.00

-0.50

0.00

0.50

1.00

0 6 12 18 24 30 36 42 48

k

r

k

Seasonality

(peaks every 12 months)


Since seasonality is observed in the original time series Yt, Yt must be deseasonalized. Deseasonalizing removes seasonal oscillations form the series. The original data series was deseasonlized by creating a new series Zt = Yt – Yt-12 by taking 12 month differences. This is a simple method of removing the annual cycles.  The deseasonalized series along with calculations for the autocorrelation function of Zt are located in the excel worksheet under tab Deseasonalized Series (Z). The autocorrelation function of Zt is shown below.
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The sample autocorrelation function of Zt declines to zero fairly rapidly, and remains small; therefore we can be relatively confident that Yt is a non‑seasonal, stationary series. The autocorrelation function of Zt also does not show the same strong peaks that were observed every 12 months in the autocorrelation function of Yt. The autocorrelation function of Zt does not show signs of a moving average term.

Model Specification for Zt
Since Zt is assumed to be stationary, and there is no moving average term, we will proceed with fitting parameters to autoregressive models for Zt. Results for autoregressive models AR(1), AR(2), AR(3), and AR(4) are show in the following two tables. Results for the autoregressive models for Zt are shown in the excel worksheet under tabs, Z AR(1), Z AR(2), Z AR(3), and Z AR(4). These tabs also include calculations for the Box Pierce Q‑stats. 
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 for AR(1), AR(2), AR(3), and AR(4) are shown under tab Z.

	Autorregressive Models for Zt

	Model
	
	
	
	
	i
	
	R2
	R2adjusted

	AR(1)
	-0.27339
	
	 
	
	-0.27339
	-5.1592
	0.08
	0.05

	AR(2)
	-0.36899
	-0.15774
	 
	
	-0.52673
	-5.82331
	0.13
	0.07

	AR(3)
	-0.33696
	-0.13285
	-0.04932
	
	-0.51914
	-6.12308
	0.10
	0.00

	AR(4)
	-0.00144
	-0.08488
	0.010064
	-0.00144
	-0.07625
	-6.3025
	0.13
	-0.01


	Autorregressive Model for Zt

	Model
	DW-stat
	Qstat (K=25)
	df
	2critical

	AR(1)
	2.117
	7.35
	24
	32.01

	AR(2)
	1.898
	5.12
	23
	30.81

	AR(3)
	2.014
	4.97
	22
	29.62

	AR(4)
	1.717
	5.71
	21
	28.41


A required condition for stationarity is that 
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. All four models meet this condition.

The Durbin Watson stat tests for serial correlation between residuals. A DW‑stats ranges from 0 to 4, with a value close to 2 indicating no first order serial correlation. DW‑stats less than 2 indicate possible positive serial correlation. DW‑stats greater than 2 indicate possible negative serial correlation. Of the four models, AR(3) indicates no signs of autocorrelation. A problem with the DW‑stat is that by itself, it is not a valid measure for a lagged regression, therefore, the Box and Pierce Q‑stat will be calculated.

The Box and Pierce Q‑stat, uses the autocorrelation functions for the residuals to test for correlation between residuals. A Q‑stat less than its critical value will indicate that the model is correctly specified. K = 25 autocorrelations were used to calculate the Q‑stats, and critical values were determined at the 10% significance level.  In all four cases, the Q‑stat are less than the 2critical, enabling us to accept the null hypothesis that the residuals are white noise. Since AR(3) has the closest DW‑stat to 2, and the lowest Q‑stat, we will choose this model as the best.

R2 and adjusted R2 for the models were all very low, and it did not seem practical to use them to compare models. It should be noted that a low R2, does not necessarily mean that the specification is poor.  Even so, I wanted to see if I could improve on the low R2 by specifying a model based on the first difference of Zt. The new series is defined as Wt = Zt – Zt-1 = (Yt – Yt-12).
Model Specification for Wt
The autocorrelation function of Wt shown below reveals a sharp drop to zero, then remains small. The autocorrelation function of Wt shows no signs of a moving average term, and indicates a stationary series.
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Just like I did for Zt, I will specify four autoregressive models for Wt.  Results are shown in the two tables below. Results for the autoregressive models for Wt are also shown in the excel worksheet under tabs, W AR(1), W AR(2), W AR(3), and W AR(4). 
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 for AR(1), AR(2), AR(3), and AR(4) are shown under tab W.

	Autorregressive Model for Wt

	Model
	
	
	
	
	i
	
	R2
	R2adjusted

	AR(1)
	-0.59758
	
	 
	
	-0.59758
	0.869408
	0.36
	0.33

	AR(2)
	-0.84229
	-0.40402
	 
	
	-1.24631
	0.354183
	0.50
	0.46

	AR(3)
	-1.06192
	-0.71847
	-0.30059
	
	-2.08098
	0.723231
	0.59
	0.54

	AR(4)
	-1.02408
	-0.65576
	-0.3417
	-0.13029
	-2.02155
	0.723231
	0.59
	0.52


	Autorregressive Model for Wt

	Model
	DW-stat
	Qstat (K=25)
	df
	2critical

	AR(1)
	2.381
	15.55
	24
	32.01

	AR(2)
	2.373
	10.41
	23
	30.81

	AR(3)
	1.836
	7.58
	22
	29.62

	AR(4)
	1.989
	8.85
	21
	28.41


The first thing that should be noted is that the models for Wt have much high R2 and adjusted R2 values than the models for Zt.

Again as required for stationarity, all four models meet the condition
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. Based on the combination of factors including highest R2 and adjusted R2, DW‑stat closest to 2, and the lowest Q‑stat, AR(4) was chosen as best model for Wt.

Comparison of Models (including Ex‑Post Forecast)
In order to determine the best overall model, the best model for Zt and Wt were compared.

Predicted beer production 
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 was determined as follows:

for model AR(3) for Zt,

1. 
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2. 
[image: image14.wmf]12

ˆ

ˆ

-

+

=

t

t

t

Y

Z

Y


for model AR(4) for Wt,

1. 
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2. 
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Calculations are provided in tabs Z and W of the excel worksheet.
For the ex‑post forecasts, calculation are provided in tab Ex‑Post Frcst. Data of the excel worksheet.
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Conclusion
Although the forecasts are not perfect, they both reflect a lot of the movement of the actual values.  Model AR(4) for Wt appears to provide slightly better predicted values, when compared to the original series. It also provides an overall better forecast.
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 appears to be the most appropriate model.
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