Fox Module 13: Dummy variable regression HW

(The attached PDF file has better formatting.)

Homework assignment: auto insurance rating territories

An insurer examines claim frequencies for 15 territories: 5 urban, 5 suburban, and 5 rural.

Urban		Sub-urban		Rural	
Territory	Claim Frequency	Territory	Claim Frequency	Territory	Claim Frequency
1	14.30%	6	10.88%	11	9.59%
2	11.00%	7	16.58%	12	8.54%
3	20.90%	8	12.72%	13	10.32%
4	16.85%	9	9.40%	14	10.01%
5	12.85%	10	12.92%	15	9.24%

A. How many dummy variables does this regression use?

- B. What are the values of the dummy variables for urban, sub-urban, and rural? Assume rural is the base territory, with dummy variables equal to zero.
- C. Use Excel or other statistical software to run the regression. What are the values of α , β_1 , and β_2 ? (Fox uses γ_1 and γ_2 instead of β_1 and β_2 for dummy variables.) Explain what each of the coefficients means.

Jacob: Fox uses both γ_1 and γ_2 as well as β_1 and β_2 .

Rachel: We do this is the territory number has a quantitative value. But the territory numbers here are just indicators; they have no quantitative meaning. The regression equation is

Frequency = $\alpha + \beta_1 \times D_1 + \beta_2 \times D_2$

In Fox's notation, this is Frequency = $\alpha + \gamma_1 \times D_1 + \gamma_2 \times D_2$