# **Time Series Project – Boston Marathon**

#### Introduction

The first Boston Marathon was run on April 19, 1897. John J. McDermott won the first race with a time just shy of 3 hours. The 2010 race was completed in just under 2 hours, 6 minutes. I thought it would be interesting to fit a model to the data and see when the winner is expected to come in less than 2 hours.

## Data

After quite a bit of Google searching, I came across a great website that has lots of interesting stats including historical finishing times for the Boston Marathon:

http://www.hickoksports.com/history/alphindx.shtml

#### Model Specification

It's not surprising that the finishing time has gone down over the years. A larger number of participants and developments in running gear and technique have likely played a role in decreasing the winning times close to the 2-hour mark.





Seasonality doesn't seem to be a factor, but the data does need to be tested for stationarity. The stationarity test is based on the autocorrelation:

$$\hat{\rho}_k = \frac{\hat{\gamma}_k}{\hat{\gamma}_0}$$

where  $\hat{\rho}_k$  is the ratio of sample covariance to variance at lag k. If the data is stationary, then we expect to see the correlogram drop and remain close to zero fairly quickly:



Correlogram - Sample Autocorrelation

Not surprisingly, the series for the Boston Marathon does not seem to be stationary.



By taking the first difference, we can see if the resulting series is stationary:

After taking the first difference, the series' correlogram rapidly approaches zero and appears to be stationary.

#### **Model Parameterization**

Using the stationary first differential series, the Boston Marathon winning time can be described using an autoregressive model:

$$Y_t = \delta + \sum_{i=1}^p \phi_i Y_{t-i} + \varepsilon_t$$

where  $Y_t$  is the data at time t

- $\delta$  is a constant
- $\phi_i$  is the coefficients for lag *i* data
- $\varepsilon_t$  is the error term at time t
- p is the order of auto-regression

Using Excel, for p=(1, 2, 3) the equation is as follows:

 $AR(1) = -0.007938 - 0.370401 Y_{t-1} + \varepsilon_t$ 

 $AR(2) = -0.013086 - 0.518298 Y_{t-1} - 0.445744 Y_{t-2} + \varepsilon_t$ 

AR(3) = -0.012322 - 0.540221  $Y_{t-1}$  - 0.531690  $Y_{t-2}$  - 0.108443  $Y_{t-3}$  +  $\varepsilon_t$ 

The absolute value of the sum of  $\phi_i$  is less than one for the models, as well as the individual components.

|       | R <sup>2</sup> | Adj. R <sup>2</sup> |
|-------|----------------|---------------------|
| AR(1) | 0.141823       | 0.134022            |
| AR(2) | 0.308158       | 0.295346            |
| AR(3) | 0.327718       | 0.308691            |

AR(3) has the highest  $R^2$  and adjusted  $R^2$ .

#### **Durbin-Watson**

$$d = \frac{\sum_{t=2}^{T} (e_t - e_{t-1})^2}{\sum_{t=1}^{T} e_t^2},$$

$$AR(1) \qquad 2.278$$

$$AR(2) \qquad 1.984$$

$$AR(3) \qquad 2.068$$

For the Durbin-Watson statistic, values close to two reinforce the null hypothesis indicating no serial correlation among the residuals.

# Box-Pierce test

$$Q = T \sum_{k=1} r_k^2.$$

$$\begin{array}{rrr} \mathsf{AR(1)} & \mathsf{BP} \\ \mathsf{AR(2)} & \mathsf{50.02} \\ \mathsf{AR(3)} & \mathsf{49.30} \end{array}$$

For the Box-Pierce test, at the 10% significance level with 110 degrees of freedom the Q statistic is less than the chi-squared statistic reinforcing the null hypothesis that the residuals are a white-noise process.

## **Modeled Results vs Actual**



#### **Betting Time**

The AR(3) model has the highest  $R^2$  and adjusted  $R^2$ , a Durbin Watson statistic near 2 indicating a failure to reject the null hypothesis of serial correlation, and a Box-Pierce Q statistic reflecting at the 10% significance level that the residuals are white noise. Therefore, it's a sure bet the model is correct and money should be wagered! The AR(3) model forecasts that 2032 will be the first year a runner completes the Boston Marathon in under 2 hours. I'm calling Vegas now...