Time Series Project

US Electricity Production 1973 to 2010
xxxxx xxxxxxx – Spring 2010
Introduction

For my time series project, I will look into US Electricity production from January 1973 to February 2010.  I obtained data in Billions of kWh from the United States Energy Information Administration (http://www.eia.doe.gov/).

Initial Analysis

The first step in this project is to look at the time series data and determine if  it is stationary.   Using R, I plotted the original Time Series and used the decompose() function to investigate possible Trend and Seasonality components of the series.
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The decomposed series clearly exhibits a seasonal cycle as well as a positive trend.  This is not surprising as electricity production is correlated to economic and population growth (trend), as well as cyclical demand depending on the season (summer vs winter).  Furthermore the variance increases with time, which suggests a log-transformation may be appropriate.
Model Specification - Correlogram
We proceed with model specification by looking at the correlogram of the original time series.  The following plots show both the Autocorrelation function as well as the Partial Autocorrelation function of the time series.
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The ACF and PACF plots shows a sinusoidal pattern, indicative of seasonal trend, as well as slight exponential decay.  
Stationarity of the series must be present before any ARIMA model is formed.  We can determine the stationarity of the series by looking at the data itself or looking at the autocorrelation function of the series.  
Since this time series is not stationary, I will transform the series using differencing and logarithms to form a stationary process.  I will use a lag of 12 months for my differencing given the sinusoidal pattern in the ACF, as well as my own intuition that electricity production varies by season.
Yt 
= Electricity production at time t

Yt-12
= Electricity production lagged 12 months

Zt 
= Differenced logarithms of time series

Zt = Log(Yt) – Log(Yt-12) + et
In R, I use the following command to produce a new time series (Elec.ts is the dataset),

Elec.diff <- diff(log(Elec.ts), lag=12)
The following graph shows the result of our difference and logarithm transformation.
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At first glance, there is not any indication that this series is or isn’t stationary.  Although we cannot say with certainty that this is a stationary series, non-stationary series usually produce more noticeable trends.  
I now turn to the Autocorrelation and Partial Autocorrelation function to help determine stationarity.
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If the sample autocorrelations dampen to zero as lag increases, the series is stationary.  In the Autocorrelation function and the Partial Autocorrelation function, the series dampens to zero, also the sinusoidal pattern we saw with the original series has been greatly reduced.  I believe that this series is stationary enough that we can proceed with our model specification.
From the ACF and the PACF, I will use an ARIMA model for the time series.  I’m choosing an ARIMA model because I don’t see a rapid decrease in the ACF plot.   I will try to fit both an ARIMA(1,0,1) and an ARIMA(2,0,2) model to the time series.

ARIMA(1,0,1) Model

In R, I can fit an ARIMA model with the following command, yielding the following summary statistics,
Fit.arima101 <- arima(Elec.diff, order=c(1,0,1))
Call:

arima(x = Elec.diff, order = c(1, 0, 1))

Coefficients:

         ar1      ma1  intercept

      0.7783  -0.3659     0.0208

s.e.  0.0624   0.0998     0.0045

sigma^2 estimated as 0.001108:  log likelihood = 860.62,  aic = -1713.23
The fitted ARIMA model is as follows,


Zt – 0.0208 = 0.7783*Zt-1 + et – 0.3659*et-1
Using the following R command, I obtained the a set of diagnostic plots for the ARIMA(1,0,1) model,

tsdiag(Fit.arima101)

[image: image6.jpg]Ppraie

Standardized Residuals

ACF of Residuals

&

p values for Ljung Box statistic

&




Diagnostic checking is used to determine if this model is specified correctly.  Comparison of the ACF of the Residuals and the p-values of the Ljung-Box statistic are good measures of correct specification.  The ARIMA(1,0,1) model looks like a possible model from the ACF of the Residuals, but the Ljung-Box statistic is only significant at a lag of 1, all other p-values are below our 5% confidence level, indicating that the residuals are possibly autocorrelated.
Overall, I am not confident that the ARIMA(1,0,1) model is a good fit for our differenced time series.
ARIMA(2,0,2) Model

Continuing with our model specification, I will look at the ARIMA(2,0,2) model for our differenced time series.

Fit.arima202 <- arima(Elec.diff, order=c(2,0,2))
Call:

arima(x = Elec.diff, order = c(2, 0, 2))

Coefficients:

         ar1     ar2     ma1      ma2  intercept

      0.3639  0.4141  0.1031  -0.3797     0.0207

s.e.  0.3014  0.2291  0.2907   0.1021     0.0051

sigma^2 estimated as 0.001078:  log likelihood = 866.65,  aic = -1721.3

The fitted ARIMA model is as follows,


Zt – 0.0207 = 0.3639*Zt-1 + 0.4141*Zt-2  + et + 0.1031*et-1 – 0.3797*et-2
I obtained the following set of diagnostic plots for the ARIMA(2,0,2) model,
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The ARIMA(2,0,2) model seems to be a better fit for the differenced data based on the p values of the Ljung-Box statistic.  All the values are statistically significant, and the residuals therefore appear to be random and uncorrelated.
Forecasting
I’m now going to investigate how my model forecasts the next six months of electricity production.

I used R to make a prediction using the following function,
Predict.arima <- predict(Fit.arima202,n.ahead=6)

The plot below shows how my prediction of the Differenced Logs compares to the original trend,
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The following graph shows the predicted values for Electricity production,
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Summarizing my predictions into a table and comparing to actual values for March and April (most up to date values) we see that my model is not perfect, but it does capture some of the trend.
	Month
	Actual (BkWh)
	Predicted (BkWh)

	February
	319.1418
	-

	March
	311,933
	321.8542

	April
	286,687
	295.9067

	May
	N/A
	320.2394

	June
	N/A
	356.2258

	July
	N/A
	381.1045

	Aug
	N/A
	389.5120


In R, the predict function does include standard errors calculated for my differenced log time series.

I decided not converted these into standard errors for my electricity production series, but doing so would provide confidence intervals for each prediction.

Conclusion

The ARIMA(2,0,2) model for US electricity production, was not perfect, however, it was the best one based on the diagnostic tests which indicated the appropriateness of the model based on the ACF and the Ljung-Box p-values.

Unexplained circumstances make modeling difficult, and there isn’t any perfect model for a specific time series.  However, I believe I could have refined this model by using a seasonal component within the ARIMA model at a lag of 12 months. 
APPENDIX – R Code

From R Script – US Monthly Electricity Production.R (attached separately)
# Point to location of Time Series datafile for US Monthly Electricity Production

getfile <- "//R-INTM-0001-CLA/Clientdata$/n0196273/My Documents/CAS/Vee/TS Project – US Elec Prod - Baratta/US_Electricity_Production_Monthly_Jan_1973.dat"

#Read file into a Data Frame

Elec <- read.table(getfile,header=T)

#Convert the data into a time series, starting from January 1973

Elec.ts <- ts(Elec,st=1973,fr=12)

#Plot of Electricity Time Series

plot(Elec.ts,xlab="Time (years)", ylab="Billions kWh", main=c(main="Monthly US Electricity Production",sub="Jan 1973 - Feb 2010"),col=4)

#Decompose the time series and plot the results

plot(decompose(Elec.ts),col=4)

#Plot the ACF and the PACF of the Time Series to create Correlogram

layout(1:2)

acf(Elec.ts,main=c("US Monthly Electricity Production"))

pacf(Elec.ts,main=c("US Monthly Electricity Production"))

#Create a new time series of differenced logarithms with lag of 12 months

Elec.diff <- diff(log(Elec.ts),lag=12)

#Plot of differenced series

plot(Elec.diff,main=c(main="US Monthly Electricity Production",sub="Difference of Logarithms, lagged 12 months"), xlab="Time (years)",col=4)

#Plot the ACF and the PACF of the Differenced Time Series to create Correlogram

layout(1:2)

acf(Elec.diff,main=c("US Monthly Electricity Production",sub="Difference of Logarithms, lagged 12 months"))

pacf(Elec.diff,main=c("US Monthly Electricity Production",sub="Difference of Logarithms, lagged 12 months"))

#Fit an ARIMA(1,0,1) model to the differenced time series

Fit.arima101 <- arima(Elec.diff, order=c(1,0,1))

#Obtain summary statistics of fitted model

Fit.arima101

#Perform a diagnostic test on the fitted model

tsdiag(Fit.arima101)

#Fit an ARIMA(2,0,2) model to the differenced time series

Fit.arima202 <- arima(Elec.diff, order=c(2,0,2))

#Obtain summary statistics of fitted model

Fit.arima202

#Perform a diagnostic test on the fitted model

tsdiag(Fit.arima202)

#Predict 6 months ahead forecast

Predict.arima <- predict(Fit.arima202,n.ahead=6)

#Plot original and predicted values of Differenced Logs for the last 2 years

ts.plot(window(cbind(Elec.diff,Predict.arima$pred), start=c(2008,8)), main=c(main="Prediction of Differenced Logs", sub="Aug 2008 to Aug 2010"),lty=1:2)

###I will need to convert my Differenced Logs into actual electricity production##

#Store predictions in Elec.pred6

Elec.pred6 <- Predict.arima$pred

#Generate a dummy time series of length 440

Elec.diff2 <- ts(seq(1:440), freq =12)

#Copy original time series values of differenced logs

for (t in 1:434) Elec.diff2[t] <- Elec.diff[t]

#Append predicted values of differenced logs

for (t in 435:440) Elec.diff2[t] <- Elec.pred6[t-434]

#Generate a dummy time series of length 440 for containing logs of original time series

Elec.ts.log <- ts(seq(1:452), start=c(1973,1),freq =12)

#Copy original time series values of logs

for (t in 1:446) Elec.ts.log[t] <- log(Elec.ts[t])

#Add in predicted values, generating a forecasted set of logs

for (t in 447:452) Elec.ts.log[t] <- Elec.diff2[t-12] + Elec.ts.log[t-12]

#Window out just the predictions and covert to actual electricty values

Elec.ts.pred <- window(exp(Elec.ts.log), start=c(2010,3))

#Plot Original and Predicted values with Predicted values as dotted lines

ts.plot(cbind(Elec.ts,Elec.ts.pred),lty=1:2)

#Plot original and predicted value of electricty production for last 2 years

ts.plot(window(cbind(Elec.ts,Elec.ts.pred), start=c(2008,8)), main=c(main="Predicted values of electricty", sub="Aug 2008 to Aug 2010"),lty=1:2)







