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I’m analyzing, over the last 110 years, the percentage of baby boys born in the United States (as recorded by the Social Security Administration) who have had the name Elvis.  Data was only available for the top 1,000 boy names.  As a result, in years where Elvis was not one of the top 1,000 baby boy names, data was unavailable.  For those years, I am assuming that the percentage of baby boys is the same as it was in the prior year.  This assumption is probably not the best assumption, but it is easy and should be immaterial.  
The graph below shows the percentage of baby boys born with the name Elvis from 1900 to 2009:
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There appears to be an upward trend in the data which would indicate that the data set is not stationary. We believe the trend to be linear so we take the differences between data points to create a stationary time series.  The following graph shows the differences throughout the time period:

[image: image2.emf]Elvis - 1st Difference
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This data set appears to be invariant with respect to time, but we will take 2nd differences as well to see if any value could be added by using 2nd differences instead of 1st differences.  The following graph shows the 2nd differences:
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In appears that no value was added in taking the 2nd differences, so we will stop with only taking the 1st differences.

In order to verify the stationarity of the 1st differences, we will look at the sample autocorrelation function.  If the dataset is stationary, the sample autocorrelation function should become smaller as the lag (k) becomes larger.  The following graph shows the sample autocorrelation function for the 1st differences:
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The sample autocorrelation is very high for k = 2 and falls quickly after that.  This would indicate stationarity.
If the sample autocorrelation is 1 for k=1 and 0 for all k such that k >0, then the process is white noise and there is no model that can provide a better forecast than simply expecting no change.  We can test to see if the particular values of the sample autocorrelation function are close enough to zero to permit the assumption that the true value of the autocorrelation function is 0.  If a time series is generated by white noise, it is normally distributed with a mean of 0 and a standard deviation of 1 / sqrt (T) with T = the number of observations in the series.  The 1st differenced Elvis time series has 109 observations, so if it were generated by white noise it would be normally distributed with a mean of 0 and a standard deviation of 0.095783.  Thus, if this were true, we would be 95% sure that the sample autocorrelation would be less than 0.191565.  It would appear that only 1 or 2 of the autocorrelation points exceed that number.

In order to test the joint hypothesis that all of the autocorrelation coefficients are zero, we could use the Box-Pierce Q statistic.  The statistic should be distributed as a chi-square with K degrees of freedom.  We’ll test the first 40 lags.  Q = T * the sum of the squared autocorrelations over K lags.  Q = 109 * .4706 = 51.2954.  The critical value at a 5% significance level for a chi-square distribution with 40 degrees of freedom is 55.76.  That means we fail to reject the hypothesis that all of the correlation coefficients are 0.  We will continue to fit this to various models anyways.
Because we decided the best decision was to take only the 1st difference to create a stationary time series, our degree of homogeneity is 1.  We will now fit the data to ARI(1,1,0), ARI(2,1,0) and IMA(1,2,0) models.
The summary of the 3 models is seen below:

ARI(1,1,0):  
The fitted regression line is wt = 0.028035 wt-1 + 0.004957 + εt.  The Box-Pierce Q statistic, for 108 observations with 30 lags, is 44.574.  The R2 is .001.  The χ2(1,30) =  44.574
ARI(2,1,0):  
The fitted regression line is wt = 0.030307 wt-2 - 0.237632 wt-1 +  0.004702 + εt.  The Box-Pierce Q statistic, for 107 observations with 30 lags, is 3.907.  The R2 is .056876.  The χ2(2,30) =  3.907
IMA(0,1,1):  
The fitted regression line is wt = .0062 + 0.028035 εt-1 + εt.  The Box-Pierce Q statistic, for 108 observations is 0.797.  The R2 is 0.00958.  The χ2(1,30) =  0.797
None of the models appear to be very helpful.  The 2 order ARI and the 1 order IMA have low Q-statistics, which would indicate good models, but have a very low R2 value.  None of these models provide much predictive power.

