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Introduction
The objective of this project is to fit an ARIMA model to scores achieved by a schizophrenic patient.  The data can be found at the following website: http://robjhyndman.com/TSDL/health/.  This data was collected on a study of a schizophrenic patient over 120 days.  For the first 60 days, he took a perceptual speed test and his results were recorded.  Starting on Day 61, he received a powerful tranquilizer treatment that is believed to reduce a schizophrenic patients’ perceptual speed.  He received the same perceptual speed test, and his results were again recorded.  
This project will work through the following steps.  First, I will determine whether the time series is stationary, and if not, how to transform the data to achieve stationarity (ie. first difference, logarithms, etc.)  Then, I will specify a time series model to the data and determine the parameters.  Several diagnostic tests, including Durbin Watson and Box-Pierce Q statistic will be performed to determine if the parameters are indeed the best-fit.  Finally, I will use the best-fit model to forecast the data.  
Data Analysis
I split the data into two groups with the pre-treatment results in one group (Day 1 to Day 60) and the post-treatment results in a second group (Day 61 to Day 120).  This way the treatment effect would not affect my forecasts.  Then, I used Day 61 to Day 115 to fit my model, leaving the remaining 5 days to be used as a comparison against the model’s expected forecast.

Figure 1 below is a graph of the original data – it exhibits a downward trend.  
Figure 1.
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Although most time series data often exhibit seasonality, this set of data of a schizophrenic patient’s test results does seem to have a major indication it is seasonal as there are no major peaks or troughs.  This can also been seen in the autocorrelation of the original time series data in Figure 2. 

Figure 2.
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By further examination of Figure 2, the time series is not stationary.  If it were stationary, the sample autocorrelation would approach zero as the lag increases.  This does not happen until lag 22. 
The next step is to convert the time series so that it is stationary.  If a time series is exponential, one would take logarithms.  However, because this series has more of a linear trend, it is more appropriate to take first differences.  Figure 3 below is a graph of the first difference of the original data.  
Figure 3.
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It can be seen that the time series does not show trend and also moves rapidly towards zero.  
Figure 4 below is correlogram of the first difference.

Figure 4.
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Again, stationarity can be confirmed as the autocorrelation declines quickly to zero and remains there after lag 3.  

Model Specification and Diagnostics 
The data was first fit to an AR(1) model, which is the most common ARIMA model.  The parameters for this model were determined using the Excel regression tool add in, resulting in the following model:

Yt = 41.309 + 0.459Y t -1 + ε t
In this model, φ1 is equal to 0.459.  Had the φ1 parameter been more than 1 or less than    -1, the time series is not stationary.  If it was approximately equal to one, then the time series is a random walk and also not stationary.  Because the φ1 parameter in this model is less than 1, it is possible that we have an AR(1) model.  This coincides with Figure 4 where it was noted that the autocorrelations declined rapidly suggesting that the time series is stationary.  
Recall that the goal of ARIMA modeling is to be able to make forecasts in the future.  Know that no matter what measures one takes to make the best possible model, a model will never be able to forecast an exact future value since time series are stochastic.  The idea is to obtain the optimal model where the ARIMA process is left with nothing but white noise of random fluctuations.  
Some basic diagnostics that one can use to test for white noise include the Durbin-Watson statistic and the Box-Pierce Q statistic.  One of the main differences between the Durbin-Watson statistic and the Box-Pierce statistic is that while the former uses autocorrelation of lag 1, the Box-Pierce statistic uses many lags.  A Durbin-Watson statistic approximately equal to 2 indicates that there is no serial correlation in the residuals.  For Box-Pierce Q statistic, white noise has a Q statistic that is lower than the corresponding chi-squared statistic. 

In the AR(1) model, the Durbin Watson is 2.49.  This seems to deviate relatively far from targeted value of 2, but this may simply be due to the independent variable having high autocorrelation.  If this is the case, then the Durbin-Watson statistic can overstate the residuals.  For the Box-Pierce Q statistic, one would have to look at a handful of lags in order to smooth out the random fluctuation.  In this model, if one looks at the first 30 lags, it can be seen that the p-values are consistently higher than the 10% critical value.  Thus, we do not have enough evidence to reject the null hypothesis that the residuals are a white noise process.  Details of the calculations can be seen in the Excel worksheet titled “BPQS – AR(1).”
It’s possible this time series can best be modeled in an AR(1) model, but let’s explore the value of adding one more parameter.  That is, let’s fit the data to an AR(2) model.  The resulting AR(2) model using the regression tool is:
Yt = 40.952 + 0.304Y t -1 + 0.237Y t -2 + ε t
ing AR(2) model using the regression tool is:

In repeating the process, the Durbin-Watson statistic is 1.45.  This is still relatively far from the targeted value of 2.  In looking at the first 30 lags again for the Box-Pierce Q statistic, the p-values are mostly higher than the 10% critical value.  Therefore, we fail to reject the null hypothesis that the residuals are white noise process.  
It does not look like adding an additional parameter helps the model.  In following the principle of parsimony, that is, picking the model with the fewest number of parameters but can still sufficiently explain the time series, the model that best explains the perceptual speed test results of a schizophrenic patient is through the followinig AR(1) model:
Yt = 41.309 + 0.459Y t -1 + ε t
Model Evaluation
To evaluate the how well the model is able to forecast data, the ex-post forecast will be compared with the actual data starting from Day 61 to Day 120 when the patient received the treatment.  Figure 5 below is a graphical representation of the original data versus the forecasted data.  The AR(1) model is not great in forecasting the perceptual speed scores, but with more advanced tools and programs, one can optimize the model even greater. 
Figure 5.
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