Does Homework Predict the Final Grade?

Eric W. Overholser

July 22, 2010

Contents

1 Introduction 3
2 The (2,1) Interactive Model 3
3 The (2,1) Model 5
4 The (2,0) Model 7
5 The (1,0) Model 8
6 The Selected Regression Model 11
7 Conclusion 11

1 Introduction

A student can usually expect homework, quizzes, labs, and exams to determine their final grade in a course. Also, they can expect to hear from their professor, "If you do well on your homework, you will do well in this course!" Using data obtained from four classes taught by the same professor, we will determine the most likely factors behind the final grade in the course.

First, we will regress the final course grade on the exlanatory variables gender, student class, homework average, and concept test. The homework average and concept test affect the final course grade equally for this course. Second, we will determine if any of the variables can be removed to arrive at a simpler linear model. This will be done at the 90% confidence level considering the t-statistic along with other characteristics such as multi-collinearity between the remaining variables. Last, we will make a comparison of the adjusted R-squared for each regression to determine the most favorable regression model.

2 The (2,1) Interactive Model

Consider the regression model

$$
Y_{j}=\alpha+\beta_{1} X_{1 j}+\beta_{2} X_{2 j}+\gamma_{1} D_{1 j}+\delta_{11} X_{1 j} D_{1 j}+\delta_{12} X_{2 j} D_{1 j}+\epsilon_{j}
$$

where

$\frac{\text { Variable }}{Y_{j}}$		Description
X_{1}	Logit of Final Course Grade	
X_{2}	Logit of Homework Average	
D_{1}		Gender

The linear estimates for the coefficients will be A, B_{1}, B_{2} for $\alpha, \beta_{1}, \beta_{2}$, respectively. We transformed each of the variables X_{1}, X_{2}, and Y using the logit function since each of the variables are bounded in $(0,100)$. The coefficients and other statistical information for the $(2,1)$ Interactive Model is shown in Figure 2.1.

SUMMARY OUTPUT	
Regression Stotistics	
Multiple R	0.902273001
R Square	0.814096568
Adjusted R Square	0.79996220
Standard Error	0.382560842
Observations	48

RESIDUAL OUTPUT

Observation		Predicted Logit(V)	Residuals	Fit
	1	1.138152415	0.217520638	75.73403
	2	0.087075405	-0.501270405	52.17551
	3	0.922338677	-0.127240306	71.55184
	4	2.076770647	-0.00906999	88.86248
	5	0.165674833	0.255010457	54.13242
	6	2.7413998	0.201753374	93.94258
	7	1.381391865	-0.018132687	79.92144
	8	1.546821448	-0.529103845	82.44542
	9	0.660929022	-0.29419551	65.9469
	10	0.021601595	-0.650729393	50.54002
	11	0.780827719	0.081994694	68.58585
	12	2.142768481	0.081443446	89.49911
	13	0.725571992	0.661139088	67.38328
	14	2.331983818	-0.315714503	91.14915
	15	0.652801404	-0.091918432	65.76415
	16	1.772967162	0.179613625	85.48263
	17	1.576313118	0.310512641	82.86817
	18	2.026959383	0.244333587	88.35987
	19	1.36809682	0.209539089	79.70725
	20	0.588895112	-0.504207766	64.31116
	21	1.475627668	0.121421458	81.39113
	22	2.310326975	-0.277695684	90.97287
	23	1.738712479	0.098054619	85.05235
	24	1.412061098	0.307111432	80.40908
	25	0.564624991	0.649341379	63.7522
	26	1.100141314	0.277494984	75.02866
	27	1.714279233	-0.134291521	84.73905
	28	0.95463302	0.074481505	72.2046
	29	1.451421283	-0.029582517	81.02171
	30	2.019177428	-0.722336847	88.27959
	31	1.164101961	-0.084527826	76.20773
	32	0.745321808	0.025326463	67.81585
	33	1.203259188	-0.31486667	76.91041
	34	0.738120992	-0.019016232	67.65848
	35	3.16887333	-0.566071756	95.9646
	36	-0.122965779	-0.628190091	46.92972
	37	0.744799952	0.372881161	67.80446
	38	0.911175358	0.199675085	71.32406
	39	2.365922421	-0.140428168	91.41915
	40	1.092940839	-0.181641818	74.89351
	41	0.806134821	0.134303221	69.12852
	42	1.297182606	0.006508624	78.53604
	43	1.738917088	0.570620808	85.05495
	44	1.245999503	0.509339964	77.66066
	45	0.8197329	-0.381682239	69.41796
	46	3.114923173	-0.422177516	95.75041
	47	2.035627982	0.613022708	88.44873
	48	1.693779869	0.541647671	84.47206

Figure 2.1: The (2,1) Interactive Model
Figure 2.1 shows that the concept tests are the most significant explanatory variable predicting the final course grade. This model proposes that for every point you earn on the concept test predicts that you will earn a higher final course grade compared to every point from the homework average. A
possible explaination for this is the dedication given to a homework assignment compared to a concept test. There were relatively few concept tests given as compared to many homework assignments assigned throughout the semester. With 81.4% of the data explaned by these variables (79.2% using the adjusted R-square) this model seems to be a fairly reliable predictor of the final course grade.

The interactive coefficients δ_{11} and δ_{12} have high P-values. These interactive terms lean towards not being significant. So our next model will remove these interactive terms in an attempt to improve the model.

3 The (2,1) Model

Consider the regression model

$$
Y_{j}=\alpha+\beta_{1} X_{1 j}+\beta_{2} X_{2 j}+\gamma_{1} D_{1 j}+\epsilon_{j}
$$

using the same variable definitions as with the (2,1) Interactive Model. Figure 3.1 shows the regression statistics for the model. Again, the concept tests are a powerful predictor of the final course grade. How does this model compare to the prior model. The R-squared has slightly dropped, and the adjusted R-squared has also dropped. This indicates that we have a little explanatory power, but it is preferred to the prior model if one wants to insure that more explanatory variables are significant at the 90% level.

The gender dummy variable is the only variable with a coefficient that is not at the 90% confidence level. This indicates that gender was not a factor in the final course grade. We will remove this dummy variable for our next model.

Figure 3.1: The (2,1) Model

4 The (2,0) Model

Consider the regression model

$$
Y_{j}=\alpha+\beta_{1} X_{1 j}+\beta_{2} X_{2 j}+\epsilon_{j}
$$

using the same variable definitions as with the $(2,1)$ Interactive Model. Figure 4.1 shows the regression statistics for this regression model. Just as with the previous two models, the concept tests are a powerful predictor of the final course grade. Comparing the coefficients of the transformed variables, the transformed concept test coefficient is five times the transformed homework average coefficient. The R-squared and adjusted R-squared have only slightly dropped (by a smaller amount than we saw from the $(2,1)$ Interactive Model to the $(2,1)$ Model). Although, we still have above 80% explanation of our data. Notice that the coefficients are significant at the 90% significance level.

Since the concept test coefficient is much more significant than the homework average cofficient, we will take a look at one last regression model with only the concept test average as the explanatory variable.

residual output

Figure 4.1: The (2,0) Model

5 The (1,0) Model

Consider the regression model

$$
Y_{j}=\alpha+\beta_{1} X_{1 j}+\epsilon_{j}
$$

using the same variable definitions as with the $(2,1)$ Interactive Model. Figure 5.1 gives the regression statistics determined for this model. This model shows that only 75% of the data is explained as compared to over 80% with the other models. But all of the coefficients are significant according to their respective t-values.

SUMMARY OUTPUT	
Regression Statistics	
Multiple R	0.866020339
R Square	0.749991228
Adjusted R Square	0.744556255
Standard Error	0.423916346
Observations	48

ANOVA	df		SS	MS	F	Significance F
	1	24.79813929	24.79814	137.9935441	$1.90843 \mathrm{E}-15$	
Regression	46	8.266433149	0.179705			
Residual	47	33.06457244				
Total						

	Coefficients	Standard Error	t Stat	P-value	Lower 95\%	Upper 95\%	Lower 95.0\%	Upper 95.0\%
Intercept	0.237730331	0.111863417	2.125184	0.038973882	0.012560954	0.462899708	0.012560954	0.462899708
X Variable 1	0.747644002	0.063645173	11.74707	$1.90843 \mathrm{E}-15$	0.619532916	0.875755088	0.619532916	0.875755088

Figure 5.1: The (1,0) Model

6 The Selected Regression Model

Based on the analysis of this study, we have selected the $(2,0)$ Model

$$
\operatorname{Logit}\left(Y_{j}\right)=0.181701+0.1234124 \operatorname{Logit}\left(X_{1}\right)+0.5391692 \operatorname{Logit}\left(X_{2}\right)
$$

Although this model does not have the highest explanatory power (i.e. the highest R -square), it does have some benefits. One benefit is that all of the coefficients are significant at the 90% level. Further, the model explains just over 80% of the data. This slightly lower than the more complicated models, and significantly higher than the single variable model.

7 Conclusion

The perfered model that predicts the final course grade is given by

$$
\operatorname{Logit}\left(Y_{j}\right)=0.181701+0.1234124 \operatorname{Logit}\left(X_{1}\right)+0.5391692 \operatorname{Logit}\left(X_{2}\right)
$$

where Y_{j} is the predicted final course grade, X_{1} is the homework average, and X_{2} is the concept test average. This model proposes that an increase in concept test average or homework average will increase your final course grade, but the concept test average more than the homework average. Using the Logit function can rewrite the above equation as

$$
\left(\frac{Y_{j}}{1-Y_{j}}\right)=e^{0.182} \cdot\left(\frac{X_{j}}{1-X_{j}}\right)^{0.123} \cdot\left(\frac{X_{2}}{1-X_{2}}\right)^{0.539}
$$

