
I. Introduction  
 
   As the economy grows, air pollution has become a serious problem to human 
health. Its influence on people is usually immediate and violent. For this reason, we 
feel interests in the daily changes of the PM10 concentrations, and we would like to 
develop a model on it. (PM10: Particulate matter < 10 micrometers in size) 
 

Our data is gathered in Lin-Yuan(林園鄉), provided by the Graduate Institute of 
Environmental Engineering, National Taiwan University. The data for modeling 
contains 1460 daily observations from Sep. 01, 1999 to Aug. 31, 2003, and the data 
for forecasting contains 61 daily observations from Sep. 01 to Oct. 31, 2003. 
 

The time series plot suggests a strong seasonal cycle with a period of one year, 
and therefore the main problem in our analysis is to estimate the seasonal effect. After 
the seasonal effect is found out, the model can be built, and then we are able to 
proceed to forecasting. 

 
   In the beginning we employ two methods －the Small Trend Method and the 
Ordinary Least Square Method－to estimate the seasonal component. Although by 
these methods we can build reasonable models, we find that there are still tiny cyclic 
variation in the residuals. We guess there maybe other seasonal effects on the series; 
thus, we turn to ask for help of spectral analysis, the consideration of the variance 
properties as a function of frequency. The result, being the same with our conjecture, 
shows that there is another origin of variance, say, the cycle with a period of a half year. 
With the half-year-period seasonal component being considered, we obtain a different 
model from the previous two.  
 

 A comparison among the three models is made with respect to their forecasting 
ability. After the comparison, we find that the model using spectral analysis has the 
minimal MSE, that is to say, in view of forecasting error, it works the best. 
 
 
 
 
 
 
 
 



II. Data Transformation 
 
   From the time series plot, we find that there may be the problem of 
heteroscedasticity, which will cause inapplicability to our analysis. We therefore need 
to transform the data for fear of such problem. We apply a logarithmic transformation 
for variance stabilization. As we can see, the situation is improved after the logarithmic 
transformation. All our analysis will be based on the transformed data. 
 
   Figures 2-1and 2-2 show that there is no apparent trend; however, the seasonal effect 
is strong. Thus, the main task of our model-building is the removal of seasonality. 
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< Figure 2-1: The time series plot of the original data > 
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< Figure 2-2: The time series plot of the transformed data > 
 
 
 



III. The elimination of seasonality 
 
Method 1: Small Trend Method 
   To make use of the small trend method, we set the general model: 

t t t tX m s Y= + +  

where tX denotes the transformed series, denotes the trend component, denotes tm ts
the seasonality component, and  denotes the error term.  tY
 
   Since the trend is small, it is not unreasonable to suppose that the trend is constant, 

say , for the year. Since im thi 365
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term for day j of the year is of course thi

          , ,i j ii jY x m js= − − ,    i = 1,2,3,4,    j = 1,2,…,365              

 

   We have estimated the seasonal component and the trend component. The 

deseasonalized and detrended observations, , ,i j ii jY x m js= − − , have no 
apparent seasonality or trend, and so the series of these observations is stationary. 

 
We can now proceed to the work on residual analysis. The ACF plot of residuals 

represents an exponential decay, and the PACF plot shows that the partial 
autocorrelation is significant at lag 3. It suggests we fit the residuals with an AR(3) 
process. To set a model for tX , let  

2 3 1
1 2 3(1 )t t t tX m s B B Bφ φ φ −− − = − − − 2~ (0, )t WN ηη , η σ

t

 

where t tX m s− −  is the stationary series. 
 
 
 



   The coefficients of the backward-shift operators are 1 0.4637φ = , 2 0.0192φ =  
and 3 0.0841φ = . However, 2φ  is not significant, we expel it from our model. We then 
obtain the following relationship : 

               3 1(1 0.4637 0.0841 )t t tX m s B B tη
−− − = − −   

 
   Next we are going to check if tη  follows a white noise process. The ACF and 
PACF plots of tη  show that there is no apparent structure in the model, so we believe 
that tη  follows a white noise process. On the other hand, the modified Ljung-Box 
test also concludes that { tη } is a white noise process. 
 
    After all we have the following model for tX :  

3 1(1 0.4637 0.0841 )t t t tX m s B B η−= + + − − ), 2~ (0,t WN ηη σ  

 
 

< Figur 3-1: The seasonality component and the trend component  
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< Figure 3-2: The detrended and deseasonalized observations > 
 



 
< Figure 3-3: The ACF plot of the detrended and deseasonalized observations > 
 
 
 

 
<Figure 3-4: The PACF plot of the detrended and deseasonalized observations > 

able 3-1: Estimates of parameters of the AR(3) process 
        P 

A

 
 
 
T

Type          Coef     SE Coef         T

R   1      0.4637      0.0261     17.76    0.000 

AR   2      0.0192      0.0288      0.67    0.505 

AR   3      0.0841      0.0261      3.22    0.001 

Number of observations:  1460 



 

< Figure 3-5: The ACF plot of tη > 
 
 

 
< Figure 3-6: The PACF plot of tη > 
 
 
Table 3-2: Modified Ljung-Box Chi-Square statistic 

Lag                   12        24        36        48 

  Chi-Square        11.2      31.9      40.2      46.9 

 DF                     9        21        33        45 

   P-Value          0.264     0.060     0.182     0.395 

 



Method 2: OLS Method 
   Due to the regular cycle of the series, we plan to model tX  with a cosine function. 
Observing the behavior of the series we consider the following form: 

cos( )t tX R tµ ω θ ε= + + + , 
where R denotes the amplitude, ω denotes the frequency, θ  denotes the phase,  

and tε  denotes the error term. Also, let X µ=  be the estimator of µ . 

 
   The parameters are estimated by OLS method. The result is: 

4.2262 0.5927cos(0.0172 2.1862)tX t= + −  

where 0.0172 = 2π/ 365. 
 

   Figure 3-7 depicts a stationary process, the error term t t tX Xε = − . The 

ACF plot of errors represents an exponential decay, and the PACF plot shows that the 

partial autocorrelation is significant at lag 3. It suggests we fit the errors with an AR(3) 

process. To set a model for tX , let 

2 3 1
1 2 3(1 )t t tX X B B Bφ φ φ −− = − − − 2~ (0, )t ee WNe , σ  

where t tX X−  is the stationary series. 

 
   The coefficients of the backward-shift operators are 1 0.6078φ = , 2 0.0539φ = −  
and 3 0.0771φ = , which are all significant under significant levelα= 0.1. 
Thus, we have the following relationship: 

          2 3(1 0.6078 0.0539 0.0771 )t t
1

tX X B B −− = − + − B e    

 
   Next we are going to check if  follows a white noise process. The ACF and te
PACF plots of  show that there is no apparent structure in the model, so we believe te
that  follows a white noise process. Also, the modified Ljung-Box test gives the te
same conclusion. 
 
   Finally, the model for tX  is 

2 34.2262 0.5927cos(0.0172 2.1862) (1 0.6078 0.0539 0.0771 )t t
1X t B B −= + − + − + −

2~ (0, )t ee WN

B e

σ  
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< Figure 3-7(a): The series { tε }> 
 

 
< Figure 3-8: The ACF plot of tε > 
 

 
< Figure 3-9: The PACF plot of tε  > 
 
 
Table 3-3: Estimates of parameters of the AR(3) process 

Type          Coef     SE Coef         T        P 

AR   1      0.6078      0.0261     23.27    0.000 

AR   2     -0.0539      0.0306     -1.76    0.078 

AR   3      0.0771      0.0261      2.95    0.003 

Number of observations:  1460 



 

< Figure 3-10: The ACF plot of > te
 
 

 
< Figure 3-11: The PACF plot of > te
 
 
Table 3-4: Modified Ljung-Box Chi-Square statistic 

Lag                   12        24        36        48 

  Chi-Square        11.0      24.3      30.3      35.5 

 DF                     9        21        33        45 

   P-Value          0.277     0.278     0.601     0.844 

 



IV. Spectral Analysis 
 
   We have estimated the seasonal component by a least-square fit using cosine 
function. Although by which we set a reasonable model for tX , from figure 3-7(b) 
we observe that there is still a tiny cycle with a period of about half a year. 
 
   We think that the half-yearly cycle also has influence on the PM10 concentrations, 
so we employ spectral analysis, the consideration of the variance properties as a 
function of frequency, to help us confirm our inference. 
 

For tX , consider the following Fourier transform decomposition 

[ ]0

1
cos( ) sin( )

2

m

t k k k
k

a
kX a t bω ω

=

= + +∑ t

0

, 

where =a 2X  corresponds to the mean behavior, m denotes the number of 

frequencies in the Fourier Transform, kω denotes the Fourier frequencies = 2πk / n 
(n: the number of observations). 
 
   The spectral density function indicates the strength of the signal as a function of 
frequency, and the sum of the spectral density function over frequency equals the 
variance of the time series data. We only capture the most important origins of the  
variance and use them to estimate the seasonality.  
 

Figure 4-1 and 4-2 show the periodogram for PM10 concentrations at Lin-Yuan 
from Sep. 01, 1999 to Aug. 31, 2003. The signals at the yearly and half-yearly  
frequencies are easily visible. The largest peak visible in figure 4-1 occurs at a 
frequency of 0.01721 day-1, or a period of 365 days; the second largest peak occurs at 
a frequency of 0.03443 day-1, which is corresponding to the half-yearly pattern.  
 

We have the following model 

4.226 0.34338cos(0.01721 ) 0.4831sin(0.01721 )tX t t= − +  

0.004236cos(0.03443 ) 0.1064sin(0.03443 ) tt t n++ + 0,1,2,...1459,  t =  

where denotes the noise term including all other signals. tn
 
 
 
 



   Figure 4-3 shows no apparent trend or seasonality, which makes believe that the 

series { } is stationary. The ACF plot of { } represents an exponential decay, and tn tn

the PACF plot shows that the partial autocorrelation is significant only at lag 1. It 

suggests we fit the noise term with an AR(1) process. To set a model for tX , let 

                 1(1 )t t tX X Bφ ξ−− = − 2~ (0, )t WN ξξ σ,  

where 4.226 0.34338cos(0.01721 ) 0.4831sin(0.01721 )tX t t= − +  

         , 0.004236cos(0.03443 ) 0.1064sin(0.03443 )t t+ + 0,1,2,...1459t =  
 
   Substituting 0.5886φ =  back into the model we obtain the relationship 

1(1 0.5886 )t tX X B tξ
−− = −  

   Similar to previous analysis, we need to check if tξ  follows a white noise process. 
The ACF and PACF plots of tξ  show that there is no apparent structure in the model, 
so we believe that tξ  follows a white noise process. The result of the modified 
Ljung-Box test supports the conclusion. 
 
   The model for tX  is eventually as the following: 

4.226 0.34338cos(0.01721 ) 0.4831sin(0.01721 )tX t t= − +  

      10.004236cos(0.03443 ) 0.1064sin(0.03443 ) (1 0.5886 ) tt t B ξ−+ + + − ,  

0,1,...1459t =  
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< Figure 3-7(b): The series { tε } with a fit > 



 

< Figure 4-1: The periodogram of the PM10 concentrations over frequency > 
 

 

< Figure 4-2: The periodogram of the PM10 concentrations over period > 
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< Figure 4-3: The series { }> tn
 

 

< Figure 4-4: The ACF plot of  > tn
 

 
< Figure 4-5: The PACF plot of  > tn
 
 
 
Table 4-1: Estimates of parameters of the AR(1) process 

Type          Coef     SE Coef         T        P 

AR   1      0.5886      0.0212     27.81    0.000 

Number of observations:  1460 

 



 
< Figure 4-6: The ACF plot of tξ > 
 
 

 

< Figure 4-7: The PACF plot of tξ > 
 
 
Table 4-2: Modified Ljung-Box Chi-Square statistic 

Lag                   12        24        36        48 

  Chi-Square        16.7      34.8      41.8      47.1 

 DF                     11        23        35        47 

   P-Value          0.117     0.055     0.199     0.468 

 
 



V. The Comparison among the Three Models  
 
   We have already built models for tX , and the difference among them lies on the 
estimations of seasonality. After modeling tX , we next want to find out which one 
performs better. We make a comparison among these models at the aspect of 
forecasting ability. Before that, we are supposed to give the criterion for judging 
which model to be better in prediction. The criterion is based on the out-sample MSE 
and the number of outliers. The smaller the out-sample MSE, and the less the number 
of outliers, the better the model is.  

  
We give one-step prediction to 1tX +  and 2tX +  respectively and then make a 

comparison based on the prediction results. As mentioned in the introduction, the data 
we use for prediction contains 61 observations from Sep. 01 to Oct. 31, 2003. 
 
 
 
 
1.Model Derived from Small Trend Method 
 
   The model is given by 

3 1(1 0.4637 0.0841 )t t t tX m s B B η−= + + − − 2~ (0, )t WN ηη σ,  
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< Figure 5-1: True values VS Fitted values － The Small Trend Method > 
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< Figure 5-2: Results of the prediction for 1tX +  － The Small Trend Method > 
 
 
 

2.5

3

3.5

4

4.5

5

5.5

09
/0
1

09
/0
3

09
/0
5

09
/0
7

09
/0
9

09
/1
1

09
/1
3

09
/1
5

09
/1
7

09
/1
9

09
/2
1

09
/2
3

09
/2
5

09
/2
7

09
/2
9

10
/0
1

10
/0
3

10
/0
5

10
/0
7

10
/0
9

10
/1
1

10
/1
3

10
/1
5

10
/1
7

10
/1
9

10
/2
1

10
/2
3

10
/2
5

10
/2
7

10
/2
9

10
/3
1

true value

fitted value

forecasting

95% CI

 
< Figure 5-3: Results of the prediction for 2tX +  － The Small Trend Method > 
 
 
 
Table 5-1: Prediction results － The Small Trend Method 

To be predicted 1tX +  2tX +  

SSE 6.1749 8.6619 

DF used 369 369 

MSE 0.1065 0.1493 

Average 95% CI width 1.1067 1.3079 

Number of Outliers 4 3 

 

 



2.Model Derived from OLS Method 
2 34.2262 0.5927cos(0.0172 2.1862) (1 0.6078 0.0539 0.0771 )t t

1X t B B −= + − + − + − B e

)

 
2~ (0,t ee WN σ  
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< Figure 5-4: True values VS Fitted values － The OLS Method > 
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< Figure 5-5: Results of the prediction for 1tX +  － The OLS Method > 
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< Figure 5-6: Results of the prediction for 2tX +  － The OLS Method > 



Table 5-2: Prediction results － The OLS Method 
To be predicted 1tX +  2tX +  

SSE 4.6279 6.5546 

DF used 3 5 

MSE 0.0798 0.1130 

Average 95% CI width 1.2148 1.4216 

Number of Outliers 3 2 

 
 
 
3.Model Derived from Spectral Analysis 
 
   The model is given by 

4.226 0.34338cos(0.01721 ) 0.4831sin(0.01721 )tX t t= − +       
10.004236cos(0.03443 ) 0.1064sin(0.03443 ) (1 0.5886 ) tt t B ξ−+ + + − ,  

0,1,...,1459t =   
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< Figure 5-7: True values VS Fitted values － Spectral Analysis > 
 
 

 
< Figure 5-8: The OLS fit and Spectral Analysis fit > 
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< Figure 5-9: Results of the prediction for 1tX +  － Spectral Analysis > 
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< Figure 5-10: Results of the prediction for 2tX +  － Spectral Analysis > 
 
 
 
Table 5-3: Prediction results － Spectral Analysis 

To be predicted 1tX +  2tX +  

SSE 4.5734 6.4249 

DF used 5 5 

MSE 0.0762 0.1071 

Average 95% CI width 1.2098 1.4103 

Number of Outliers 3 2 

 
 
 



Table 5-4: The Overall Prediction results 
 Small Trend OLS Spectral Analysis 

To be predicted 1tX +  2tX +  1tX +  2tX +  1tX +  2tX +  

SSE 6.1749 8.6619 4.62789 6.554555 4.5734 6.4249 

DF used 369 369 3 3 5 5 

MSE 0.1065 0.1493 0.079791 0.11301 0.0762 0.1071 

Average 95% CI width 1.1067 1.3079 1.214798 1.421603 1.2098 1.4103 

Number of Outliers 4 3 3 2 3 2 

 
 
 
 
 
 
VI. Conclusion 
 
   For simplicity, let the model obtained from the small trend method be model 1; 
from OLS method, model 2; from spectral analysis, model 3. 
 
   Because model 1 contains the average values of the past four years, it is easily 
affected by some extreme values. For this reason, the predicted values of model 1 
represent larger fluctuations as we can notice from figures 5-2 and 5-3; moreover, 
owing to the fluctuations, it easily makes errors when we forecast. 
 
   As for model 2 and model 3, the fluctuations of the predicted values are smaller. 
For model 2, the predicted value is mainly changing with its past three values while 
for model 3 the predicted value is mainly varying with its past one realization. 
Therefore they make fewer errors than model 1 when we forecast.  
 
   In table 5-4, when giving prediction, model 1 has the largest MSE and the most 
outliers, which shows the poorest forecasting ability. Finally, for we build model 3 
with the consideration of the half-year seasonality component (the difference is 
shown in figure 5-8), the MSE of model 3 is smaller than that of model 2. Also, the 
95% CI of model 3 is narrower than that of model 2. We therefore make a little 
improvement on our model by losing 2 degrees of freedom. But, as for the number of 
outliers, model 3 in fact has as many as model 2 has. 
   
 



VII. More on the Topic 
 
   Lin-Yuan and Chao-Chow(潮州鄉) are both towns lying at southwest Taiwan; 
Lin-Yuan is near the seashore while Chao-Chow is near the mountains. The monsoon 
is blowing from the southwest to the northeast in spring and summer, but conversely 
in autumn and winter. The monsoon from the southwest can directly blow into inner 
Taiwan, however, the northeasterly monsoon would be blocked by Central Mountains. 
From the geographic view, we guess that the suspended particulate is moving from the 
southwest to the northeast all over the year. Therefore we wonder if the PM10 

concentrations in Lin-Yuan could be a leading indicator of that in Chao-Chow.  
 
   We plan to build a transfer function model for Lin-Yuan and Chao-Chow. Let  tY
be the PM10 concentrations observed in Chao-Chow. The time series plot of  tY
holds a similar pattern to that of tX , so we employ spectral analysis to estimate its 
seasonal component. In order to avoid the redundancy, we directly show the fitted 
model 

   =  tY 4.2463 0.3912cos(0.0172 ) 0.5289sin(0.0172 )t t− +

     0.0033cos(0.03443 ) 0.1477sin(0.03443 ) tt t ς− + + , 0,1, 2,...,1459t =  

where tς  denotes the error term. 
 
   We have already built a model for tX  with spectral analysis, which is given by 

4.226 0.34338cos(0.01721 ) 0.4831sin(0.01721 )tX t t= − +       
10.004236cos(0.03443 ) 0.1064sin(0.03443 ) (1 0.5886 ) tt t B ξ−+ + + − ,  

0,1,...,1459t =   
 

   We have to fit tς  with AR(1) process with the same coefficient of tX . This leads  

tς  to equal 1(1 0.5886 ) tB υ−− . To be concise, we rewrite 1(1 0.5886 )tt tX X B ξ−= + −  

and 1(1 0.5886 )tt tY Y B υ−= + −  respectively.  

 

   However, the CCF of { tυ } × { tξ } shows no leading relationship. We guess this 

is because the distance between is not great enough to make a significant lag, that is, 

the impact of Lin-Yuan on Chao-Chow cannot last for more than one day. 
 


