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Introduction

The purpose of this study is to fit an ARIMA time series model to monthly utilization data for treatment of depression.  
Depression is a medical illness characterized by feelings of sadness, hopelessness, or pessimism that persist for an extended period of time and interfere with everyday life.  Depression comes in many forms, the two most common being major depressive disorder and dysthymic disorder.  Major depressive disorder refers to acute episodes of severe symptoms, while dysthymic disorder involves longer-term, less severe symptoms.  Over 18 million Americans suffer from major depressive disorder or dysthmic disorder each year.

There is no single known cause of depression, though it is widely accepted that it results from a combination of biological, genetic, and environmental factors.  The most common forms of treatment are medication, psychotherapy, and electroconvulsive therapy.

Many studies have indicated that the number of people receiving treatment for depression has increased in recent years.  It is estimated that by 2020, depression will be the second most common health problem in the world.
  The pattern of treatment is likely to be one that is seasonal as severity of depression symptoms has been shown to be linked to sunlight deprivation.  In fact, there is a condition that falls under the spectrum of major depressive disorder known as seasonal affective disorder (SAD).  It is defined as episodes of depression that present during the fall and winter months and resolve in spring.  
In addition, depression symptoms can be triggered by stressful events, such as financial hardship or the loss of a job.  This is a significant point of consideration in light of the current economic climate.  
Data

The data represent claims paid by my employer, a health insurer in the northeast region of the United States.  For propriety reasons, the actual data was disguised by applying a scale factor and adding a constant.  

I analyzed monthly patient encounters/1000 for treatment of depression during the period 2004-2009.  I considered encounters that take place in the outpatient setting only, and I included encounters with both MD and non-MD behavioral health clinicians.  

I identified encounters for depression treatment according to the primary ICD9 diagnosis code on the claim.  I limited the data to diagnosis codes for major depressive disorder, dysthemic disorder, non-specified depression, and brief depressive reaction (see Appendix A).  I included non-specified depression and brief depressive reaction because diagnosis codes are not always correct, and I wanted to be sure to capture the majority of depression-related claims.  

There are a total of 72 points in the data set.  This is considered small for time series analysis.  However, it is appropriate for the purposes of the NEAS project.
Exhibit 1 shows a plot of the time series.   
[image: image1.emf]Exhibit 1: Outpatient Treatment for Depression
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Though there is some evidence of seasonality—in particular, dips in July and August and peaks in March of some of the years—I originally expected to see a much stronger pattern of high utilization in the winter months and low utilization in the summer months.  

There does not appear to be significant trend except for what might be a very slight upward shift in utilization in 2009.  I actually anticipated the possibility of a much higher trend in 2009 for several reasons:
· Federal Mental Health Parity regulations went into effect in 2009.  As a result, insurers were forced to modify their benefit plans to provide the same level of coverage for mental health services as that offered for medical and surgical services.  

· The weak economy and high unemployment may have lead to more episodes of depression and increased use of mental health services.

· The summer was a particularly cloudy one in the northeast region of the country, which may have triggered symptoms in those sensitive to sunlight deprivation.    

Analysis
Model Specification
The first step in the modeling process involves analyzing the time series and investigating potential models for it.

Exhibit 1 shows that the series that has differing tendencies.  Encounters/1000 for depression treatment in some cases fluctuate significantly from one month to the next and in other cases hang closely together in successive months.  It is not readily apparent that an ARIMA model would be appropriate.  It is necessary to look at the sample autocorrelations of the series.  

The sample autocorrelation function is shown in Exhibit 2. 
[image: image2.emf]Exhibit 2: Sample Auto Correlation
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The standard error for a large sample white noise process is given by 1/(n.  The dashed horizontal lines in Exhibit 2 are plotted at ± 2 * 1/(72 = ± 0.2357.  The ± two standard errors represent critical values for testing whether or not the autocorrelation coefficients deviate significantly from zero.  
The sample autocorrelation function appears to be stationary as its values approach zero immediately and do not deviate significantly from zero except for at lags 12 and 24 where the autocorrelation values exceed the critical values.  The spikes at these lags provide evidence of annual seasonality that was not easily observable in the graph of the time series.  
As discussed, I was prepared to exclude 2009 data because I anticipated a positive trend in that year.  However, because the sample autocorrelation function indicates that the series is overall stationary, I am comfortable including 2009 data in the analysis.
The values at lags 12 and 24 satisfy Bartlett’s test.  Because they lie outside of the range of two standard errors, there is evidence to reject the null hypothesis that the autocorrelations of the time series represent a white noise process.  
The autocorrelation function is highest at lag 12 and gradually approaches zero over the next several increments of 12, remaining very close to zero at all other lags that are not multiples of 12.  This indicates that the most appropriate model for the times series will likely be a seasonal ARIMA model.  In order to try and fit a non-seasonal ARIMA to the series, it would be necessary to first adjust the data.  I did this using the ad-hoc method described in Pindyck and Rubinfield:
1. Calculate 12-month centered moving averages for each of the 72 monthly encounters/1000 values
2. Divide each monthly value by its corresponding moving average value and calculate the average of these quotients for all corresponding months in the 2004-2009 period to get the initial 12 monthly seasonal indices.

3. The sum of the monthly indices should be very close to 12.  To make the sum equal to 12, multiply each index by 12/(sum of initial monthly indices).  These are the final monthly indices.  
4. Determine the seasonality-adjusted data values by dividing each monthly encounters/1000 value by its corresponding final monthly seasonal index.   

The process is illustrated in detail in the <<Data>> tab of the Excel file.  Notice that I had to do some estimation of the centered moving averages for the first and last five months of the 2004-2009 period as this was the only time period for which data were available.  

Exhibit 3 shows a plot of the seasonality-adjusted time series.
[image: image3.emf]Exhibit 3: Seasonality-Adjusted Outpatient Treatment for Depression
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The seasonality adjustment appears to have produced a time series that is less suited to an ARIMA model than the original series.  There are no readily apparent tendencies.  
As Exhibits 4 and 5 show, the sample autocorrelation function is less stationary than the original series, and taking first differences results in little improvement.  In fact, differencing appears to have introduced unnecessary correlation. 

[image: image4.emf]Exhibit 4: Sample Autocorrelation Function of Seasonality-Adjusted Series
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[image: image5.emf]Exhibit 5: Sample Autocorrelation Function of Seasonality-Adjusted Series
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It is clear that the ad-hoc seasonality adjustment is not appropriate for this time series.  
Another method for adjusting for seasonality in the data is to take differences of the seasonal lags, which in this case would be yt - yt-12.  As the sample autocorrelation function in Exhibit 6 shows, this method also fails to produce a series that would be preferred to the original series. 

[image: image6.emf]Exhibit 6: Sample Autocorrelation Function of Y(t) - Y(t-12)
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I proceed to determine an appropriate seasonal ARIMA model for the original time series.  
Model Fitting and Diagnostics
I first test a seasonal AR(1) model with a seasonal period of 12:

yt = φyt-12 + et  
I then test whether adding other lags with non-zero coefficients will improve the predictive ability of the model.  
I consider the following regression statistics to evaluate the fit of the model:

· Adjusted R2 – Indicates the proportion of the variation in yt that can be explained by the model.

· Standard Error of the Regression – Interpreted as the average size of the regression residuals

· Box-Pierce Q-Statistic – To test if the residuals are a white noise process.  If the Q-statistic for x number of lags is below the critical Chi-Squared value for a 10% significance level with n – k degrees of freedom where n=number of observations and k=number of explanatory variables, we do not reject the null hypothesis that the residuals form a white noise process.  

· Durbin-Watson Statistic – To test for serial correlation in the residuals.  A Durbin-Watson statistic that is close to 2 gives cause for accepting the null hypothesis that the residuals are not serially correlated.

I used the Excel regression add-in to determine the least-squares estimates of the coefficients of the model.  The resulting equation and regression statistics for the first model are as follows:

yt = .8083yt-12 + 68.4319

Adjusted R2 = 0.5781
Standard Error = 17.6256
Box-Pierce Q-Statistic (60 lags) = 82.5845 
Durbin-Watson Statistic = 2.3752

The Box-Pierce Q-Statistic exceeds the critical Chi-Squared value (10% significance, 59 DOF) of 72.1598, so we reject the null hypothesis that the residuals are a white noise process.  This indicates that the model is not a good fit.

To try and fit a better fitting model, I add a non-zero coefficient at lag 1:

yt = φ1yt-1 + φ12yt-12 + et  
The resulting equation and regression statistics are below:


yt = -0.0966yt-1 + .8172yt-12 + 98.9554  
Adjusted R2 = 0.5805

Standard Error = 17.5775

Box-Pierce Q-Statistic (60 lags) = 64.9306 

Durbin-Watson Statistic = 2.1231
The adjusted R2 and standard error improve only slightly from those for the first model.  The t-statistic for the coefficient φ1 is -1.1482 with a p-value of .2557, which indicates that yt-1 is not a particularly strong predictive variable.  
However, the Box-Pierce Q-statistic for this model is less than the critical Chi-Squared value (10% significance, 58 DOF) of 71.0397, so we can accept the null hypothesis that the residuals are a white noise process.  This indicates that the model is a better fit than the first model.  In addition, the Durbin-Watson statistic for this model is closer to 2, so there is stronger evidence against serial correlation of the residuals.  
I test one final model with an additional non-zero coefficient at lag 2:
yt = φ1yt-1 + φ2yt-2  + φ12yt-12 + et  
Results:

yt = -0.0885yt-1 + 0.1443yt-2  + 0.8252yt-12 + 44.5155  
Adjusted R2 = 0.5949
Standard Error = 17.2733
Box-Pierce Q-Statistic (60 lags) = 56.5570 

Durbin-Watson Statistic = 2.2503
The t-statistic for the coefficient φ2 is 1.7393 with a p-value of 0.0875, which indicates that yt-2 is more significant of a predictive variable than yt-1.  However, there is very little improvement in the adjusted R2 and standard error from the second model.  Since lag 2 adds multicollinearity to the regression equation, it only provides value if the adjusted R2 and standard error improve significantly.  Thus, the second model is preferred to the third model.
Forecast

Exhibit 7 shows a graph of the actual and forecasted time series according to the second model, yt = -0.0966yt-1 + .8172yt-12 + 98.9554.
[image: image7.emf]Exhibit 7: Actual vs Forecasted Times Series
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The model is not a perfect fit, but it does accurately reflect much of the fluctuation from month to month and capture several of the seasonal highs and lows.   
Conclusion

The purpose of this study was to fit an ARIMA model to a time series of monthly encounters/1000 for treatment of depression.  The sample autocorrelation function of the series shows spikes at lags that are multiples of 12, which indicates annual seasonality.  Seasonality adjustments to the data failed to produce stationary series conducive to ARIMA modeling, so I tested three seasonal autoregressive models:

Model 1:
yt = φyt-12 + et  
Model 2: 
yt = φ1yt-1 + φ12yt-12 + et  
Model 3: 
yt = φ1yt-1 + φ2yt-2 + φ12yt-12 + et  
I used the Excel regression add-in to determine least-squares estimates of the coefficients of each model and produce regression statistics to evaluate the fit of each model.
The first model failed the Box-Pierce Q-test at 10% significance for white noise of the residuals.  Though the second model only slightly improved upon the adjusted R2 and standard error of the first model, it passed the Box-Pierce Q-test at 10% significance.  Thus, it is preferred to the first model.  
The third model includes a non-zero coefficient for lag 2.  This adds multicollinearity to the regression equation, so this equation should only be retained if the adjusted R2 and standard error improve significantly.  This is not the case, so we conclude that the second model is the most appropriate.

The equation for the second model is yt = -0.0966yt-1 + .8172yt-12 + 98.9554.  It does not fit the time series perfectly, but it does a decent job of reflecting the fluctuation from month to month and the seasonal low and high points.  

Appendix A—ICD 9 Diagnosis Codes for Depression
Major Depressive Disorder: 296.20-296.3
Dysthymic Disorder: 300.4

Non-Specified Depression: 311

Brief Depressive Reaction: 309.0
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