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Introduction

The purpose of this study is to determine whether or not medical costs for children and adolescents are linearly correlated with age, gender, and body mass index (BMI).  
As adults grow older, their medical costs tend to increase.  Outside of the child-bearing years, men tend to have higher medical costs than women.  This study will help to answer the question of whether or not these patterns hold true during childhood years.  
BMI is a measure of weight in relation to height that is used as an indicator for level of body fatness.  It is widely known that overweight and obese adults are at higher risk for health problem such as coronary heart disease, diabetes, and certain types of cancers. As a result, they generally have higher medical costs.  These complications tend to surface later in life, but this study will help to shed light on whether or not unhealthy weight translates into higher medical costs during childhood.
Data 
The data was obtained from my employer, an HMO carrier.  Pediatricians from throughout the state submitted BMI measurements for a total of approximately 16,000 children ages 5-17 who are members of the plan.  The absence of ages 1-4 in the sample population is actually preferred for the purposes of this study because medical costs tend to be much higher in the first several years of life.  This would create bias in any least-squares linear regression modeling.  Age is defined as of the date the BMI measurement was taken. 
BMI as a measure of weight status in children is dependant on age and gender.  Children are considered overweight when BMI is at or above the 85th percentile and lower than the 95th percentile for the same age and gender.  Children with a BMI that is at or above the 95th percentile for the same age and gender are considered obese.  
Of the approximately 16,000 children, I included only those with a BMI percentile of 50% or higher for the study.  The reason for this is that a positive correlation between BMI and medical costs, if one exists, is probably only apparent as BMI increases beyond the median.  I wouldn’t expect costs to increase as BMI increases towards the median.  
The sample lives are enrolled in a variety of HMO products with different benefit designs, which may impact individual costs.  As a result, I limited the population to those enrolled in products with similar cost-share arrangements.  The distribution of explanatory factors in the included and excluded products is consistent, so I am not concerned that making this exclusion affects the randomness of the sample.  The BMI measurements were taken throughout 2008, so I considered medical costs for the time period 2007-2008.  I only included costs for services that would be covered by all of the plans in the sample population.  
The final sample population consists of 7,441 lives.

For proprietary reasons, I disguised the original data by multiplying by an adjustment factor and adding a constant.  
Analysis

The dependent variable, two-year medical costs, is positively skewed in the sample population as indicated by the fact that: 

(Upper Hinge – Median) / (Median – Lower Hinge) = 2.46.

To correct for skewness and make the distribution more symmetric, it is necessary to find a transformation that will bring this ratio close to 1.  After taking the natural logarithm (ln) of the claim costs for each life, 

(Upper Hinge – Median) / (Median – Lower Hinge) = 1.21.

Ideally, this ratio would be even closer to 1, but it does represent a great deal of improvement over the original distribution.  I will test regression models using ln(medical costs) as the dependent variable.
I first examine the conditioning plot of the data in Exhibit 1 to see if there are any readily observable correlations.  
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Exhibit 1: Conditioning Plot
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The conditioning plot does not indicate any clear correlation between medical costs and age or medical costs and BMI percentile for either males or females during the childhood years.  In addition, the variance in medical costs at each value of age and BMI percentile appears to be significant.  I do not anticipate being able to find a linear regression model that will fit the data well.
I test a multiple regression model with all explanatory variables:

Y=(1X1 + (2X2 + (D + (1X1D + (2X2D + ( 
where

Y = ln (2-year medical costs)
X1 = age (years)
X2 = BMI percentile
D = 0 if female, 1 if male
X1D = interaction of gender and age
X2D = interaction of gender and BMI percentile
A few comments about the terms in the model:
· There is no collinearity of age and BMI percentile in the sample population.  The regression of BMI percentile on age produces an R-squared of <0.001.  
· Gender is a qualitative explanatory variable represented by the dummy variable D.  I arbitrarily assign the baseline value D = 0 to the female group.  In the absence of the interaction variables X1D and X2D, (  represents the expected difference in medical costs between males and females of equal age and BMI percentile, regardless of the values at which each are set .  In the presence of the interaction variables, the coefficient ( represents the difference in intercepts at X=0 between the male and female groups.  Comparing Graph A to Graph B and Graph C to Graph D in Exhibit 1, however, it is not clear that there are any differences between the intercepts.  

· The interaction variables X1D and X2D account for differing effects of age and BMI percentile by gender.  The coefficients (1 and (2 represent the differences in slopes between the two groups for age and BMI percentile, respectively.  It is not readily apparent, though, when comparing the slope in Graph A to the slope in Graph B and the slope in Graph C to the slope in Graph D, that there are any differences.  All of the slopes appear to be close to 0.     
· In the absence of the dummy and interaction variables, (1 and (2 represent the partial effects on medical costs of age and BMI percentile, respectively, when holding the other variable constant.  In the presence of the dummy and interaction variables, (1 and (2 represent the effects of age and BMI percentile among females.  This is due to the fact that when D=0, all of the other terms in the model disappear, leaving Y=(1X1 + (2X2 + (.  (, therefore, represents the intercept for the regression of medical costs on age and BMI percentile for females.  
· In order not to violate the Principle of Marginality, any model that includes the interaction terms must also include all component terms.  

I used the Excel regression add-in to determine the least-squares estimates of the coefficients of the model.  The resulting equation and the key regression statistics are below:

Y = 0.0537X1 + 0.004X2 + 0.7349D – 0.0409X1D – 0.0034X2D + 6.5728
	R Square
	0.0193

	Adjusted R Square
	0.0187

	Standard Error
	1.055

	F-stat
	29.331

	F-stat P-value
	<0.001





Standard Error
t-stat
P-value
	(
	0.100
	65.624
	0

	X1
	0.005
	11.096
	<0.001

	X2
	0.001
	3.701
	<0.001

	D 
	0.140
	5.245
	<0.001

	X1D
	0.007
	-6.010
	<0.001

	X2D
	0.002
	2.224
	0.026


The F-statistic of the regression is highly significant as indicated by the p-value, which means that we can reject the null hypothesis that all of the explanatory variable coefficients equal 0.  The t-statistic for each of the explanatory variable coefficients is highly significant as indicated by the corresponding p-value, which means that we can reject each null hypothesis that the coefficient equals 0, and we can be very confident in the estimates of the value of each coefficient.  The values of the coefficients—those involving BMI, in particular—are very close to zero, which is an indicator that none of the explanatory variables is a particularly strong predictor of medical costs in the sample population.   
The R-squared value indicates that the model explains less than 2% of the variation in medical costs.  Normally at this stage of the analysis, I would remove terms from the model and test whether the R-squared values of the resulting models decrease materially, but since the model with all terms is a such a poor fit, we can conclude that there is virtually no linear correlation between medical costs and any of the explanatory variables.   This confirms what I suspected initially following analysis of the conditioning plot.
Conclusion

The sample population for this study consists of 7,441 children ages 5-17 in the 50th-100th BMI percentiles for each one’s respective age and gender.  In this population, age, BMI percentile, and gender are poor indicators of medical costs.  I would expect these factors to be significant indicators of medical cost in the adult population. 
Particularly interesting to me is the fact that this study shows no evidence of heavier children having higher medical costs than children of a healthy weight.  This is most likely the result of the fact that conditions associated with obesity, such as diabetes, coronary disease, and cancer, tend to develop during adulthood, so overweight and obese children have not yet experienced complications that present the need for medical treatment.  
There is an additional factor to consider with regards to weight that may be affecting the results of this study, and that is the possibility that the parents of overweight and obese children are less conscientious when it comes to the health of their children.  As a result, they don’t receive the regular medical care that they need, so they actually have lower medical costs.  It would be very difficult to quantify parent conscientiousness for use as an explanatory variable in a study of medical costs in children.  
