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Introduction

For my student project, I wanted to examine data that was interesting to me. As a young woman, I find that almost all of my girlfriends love white wine but find red wine to be disgusting.  I, on the other hand, really enjoy the taste of red wine. So when I found a data set on the monthly Australian sales of red wine, I was curious to have a look at the data.
This project encompassed many of the practical applications that I learned from the time series course. In particular, I focused on testing for stationarity and seasonality. I also performed an ex-post forecast after choosing an appropriate model to see how well it matched up to the actual data.

Data

I found my data at the following website:  
http://robjhyndman.com/tsdldata/data/redwine.dat.
This data is for monthly Australian sales of red wine, in thousands of liters. The data is available from January 1980 through July 1995. I decided to use the January 1980 through December 1989 data to create my model, and I used the January 1990 through July 1995 data as the actual values in my ex-post forecast. Before I started to build my ARMA model, I wanted to have a look at the data. Here is a graphical display of the January 1980 through December 1989 data:
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At first glance, I suspected that this data set had a seasonal trend; we can see that a fairly consistent pattern occurs every twelve months. It also seems like this time series is not stationary, because although each year’s data looks roughly the same, we can see the sales increasing over time. 
Although I was fairly confident that I needed to deseasonalize this data before proceeding just by looking at the graph, I wanted to check the autocorrelation function first. The original data, as well as the graph of the data and the correlogram, are shown in the “Original Data” tab of the Excel file. Below you can see a graph of the autocorrelation function of the original time series.
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My earlier suspicions of annual seasonality seem to be confirmed by this correlogram, which shows significant peaks at all of the lags of multiples of twelve. We can also use the correlogram, along with Bartlett’s test, to show that this original time series is probably not a white noise process. The sample autocorrelations in a white noise process are approximately normal with a zero mean and a standard deviation of SQRT(1/T). Using Bartlett’s test, we get a statistic of SQRT(1/120)*1.96, which is equal to 0.1789. The correlogram shows lots of points with absolute values greater than 0.1789, so we can be 95% confident that the actual autocorrelation of the original data is not zero.
Since the data clearly has a seasonal pattern, I want to deseasonalize it before I start to create an ARMA model. The most pronounced pattern that I can see in the data is annual, so I decided to try a simple modification of the data. Instead of modeling yt , I would model yt - yt-12 , the difference between sales in the current month and the same month in the prior year. To avoid confusion, I will call this function qt . Below are the graph of qt and its correlogram, which can both be found in the “Modified Data” tab of the Excel file.
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We can see from the correlogram that the autocorrelation declines quickly and is approximately zero for large lags. This would indicate that the seasonally adjusted data constitutes a stationary time series. Now that I am satisfied with the data modifications, I will determine which ARMA model fits the deseasonalized data best.
Model Specification

I used Excel linear regression to calculate the following models (using the seasonally adjusted data):

AR (1): Yt = 75.2207 + 0.3268Yt-1
AR (2): Yt = 73.7177 + 0.3203Yt-1 + 0.0208Yt-2
AR (3): Yt = 74.8941 + 0.3206Yt-1 + 0.0258Yt-2 - 0.0165Yt-3
AR (4): Yt = 73.4209 + 0.321Yt-1 + 0.0254Yt-2 - 0.0227Yt-3 + 0.0204Yt-4
The regressions are shown in the AR(1), AR(2), AR(3), and AR(4) tabs. I also show the calculation of the Durbin-Watson and Box-Pierce Q statistics in this tab. I used these statistics to determine which model best fits the data.
	Model
	AR (1)
	AR (2)
	AR (3)
	AR (4)

	Durbin-Watson
	2.00
	1.98
	1.98
	1.99

	Box-Pierce Q
	79.63
	82.38
	81.41
	80.76

	Chi-Squared (10%)
	  118.50
	  117.41 
	 116.32 
	 115.22 

	Sum of Coefficients
	0.3268
	0.3411
	0.3299
	0.3442


First we will look at the Durbin-Watson statistic to determine whether or not the residuals are correlated. A Durbin-Watson statistic of 2 indicates no serial correlation of residuals. According to the Durbin-Watson test, none of the above models show significant serial correlation among residuals, since their statistics are so close to 2.
Next we will evaluate the Box-Pierce Q statistic, which determines whether or not the residuals probably form a white noise process. If the Q statistic is lower than the critical Chi-Squared value, then the null hypothesis that the residuals are a white noise process cannot be rejected. At the ten percent significance level, we can see that we would not reject any of the AR models, according to the Box-Pierce test.
In order for a model to be stationary, the sum of the coefficients must be less than one. We can see that is the case for each of the AR models as shown above.
Although all of our models have passed the three statistical tests that determine their accuracy, I believe that there is one model that is clearly preferred. The AR(1) model is not only the simplest of all the models I tested, it also has a Durbin-Watson statistic of exactly 2, the lowest Box-Pierce Q statistic, and the lowest sum of coefficients. For those reasons, I will use the AR(1) model to forecast the future red wine sales.

Model Evaluation

In the “Ex-Post Data” tab of the Excel file, I show the calculation of the forecasted values for red wine sales. Because the data in my model is qt rather than yt , we need to add the qt value to the yt  from the prior year in order to get the actual forecast. Since I used the January 1980 through December 1989 data to create my model, I used the January 1990 through July 1995 data as the actual values in my ex-post forecast. Below I show the full projection for this time period, as well as a view of the projection for 1990 alone. In each graph, I show the actual values as well as the projected values so that we can determine the accuracy of the model.
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Conclusion
It is evident from both of the graphs above that the AR(1) model does in fact fit the data well. The predicted sales follow the same basic pattern as the actual wine sales. Not only do the aforementioned statistical measures suggest that the model is a good fit to the data, the graphs indicate the same thing. However, we can see from the two graphs above that the model is clearly better at forecasting data in the near future. The 1990 data follows very closely to what the model predicts. And we should expect this, since data in the distant future is generally more difficult to predict. Fortunately, the best model I could find was also the simplest of the ones I tested! I imagine that there is a better model that exists for this data, but the simplicity of the AR(1) model is pleasing and it produces a model that is quite accurate, especially for the first forecasted year.
