Time series mod 5: MA(2) autocorrelations practice problems

For AR(1), AR(2), MA(1), MA(2), and ARMA(1,1) processes, know how to calculate γ_0 , γ_1 , γ_2 , ρ_1 , and ρ_2 from φ_1 , φ_2 , θ_1 , θ_2 , and σ_{ϵ} . Know the formulas for these five simple processes. For more complex processes, such as ARMA(p, q) for p > 1 and q > 1, or AR(p) for p > 2, or MA(q) for q > 2, know the principles, such as the shapes of the sample autocorrelation and partial autocorrelation functions.

Exercise 1.1: MA(2) process

An MA(2) process has $\theta_1 = 0.7$, $\theta_2 = 0.5$, and $\sigma_{\epsilon} = 2$.

A. What is γ_0 ? B. What is γ_1 ? C. What is γ_2 ? D. What is ρ_1 ? E. What is ρ_2 ?

Solution 1.1: For an MA(2) process:

 $\gamma_{0} = (1 + \theta_{1}^{2} + \theta_{2}^{2}) \times \sigma^{2}$ $\gamma_{1} = (-\theta_{1} + \theta_{1} \times \theta_{2}) \times \sigma^{2}$ $\gamma_{2} = (-\theta_{2}) \times \sigma^{2}$

$$\begin{split} \rho_1 &= (-\theta_1 + \theta_1 \times \theta_2) / (1 + \theta_1^2 + \theta_2^2) \\ \rho_2 &= (-\theta_2) / (1 + \theta_1^2 + \theta_2^2) \\ \rho_k &= 0 \text{ for } k = 3, 4, \ldots \end{split}$$

Cryer and Chan, page 63 (equation 4.2.3)

Part A: $\gamma_0 = (1 + \theta_1^2 + \theta_2^2) \times \sigma^2 = (1 + 0.49 + 0.25) \times 2^2 = 6.960$

Part B: $\gamma_1 = (-\theta_1 + \theta_1 \cdot \theta_2) \times \sigma^2 = (-0.7 + 0.7 \times 0.5) \times 2^2 = -1.400$

Part C: $\gamma_2 = (-\theta_2) \times \sigma^2 = -0.5 \times 2^2 = -2.000$

Part D: $\rho_1 = (-\theta_1 + \theta_1 \times \theta_2) / (1 + \theta_1^2 + \theta_2^2) = -0.201$

Part E: $\rho_2 = (-\theta_2) / (1 + \theta_1^2 + \theta_2^2) = -0.287$