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Predicting Future Birth Rates with a Time Series

Introduction
I looked at birth rates in the US from 1909 to 2003 to determine if future birth rates could be predicted by prior birth rates.  I found my data at the Center for Disease Control and Prevention website.

Model Specification

Since I am using annual rates there is no seasonality expected in this model.  I used an autocorrelation graph to determine stationarity.  The graph is shown below.
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A stationary series will have a quick drop to zero, which you can see in the graph above.  However, the autocorrelation increases and then decreases past zero by about lag 45.  This may represent two separate series. 
First differences could also lead to stationarity.  The next graph shows the autocorrelation of first differences.

[image: image2.emf]Autocorrelation of First Differences - All Years
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The autocorrelation of first differences seems to indicate that there are at least two separate series.  Prior to lag 45 there is great fluctuation in comparison to the fluctuation after lag 45.  The fluctuation after lag 45 is VERY close to zero.  Lag 45 correlates to the year 1954.  This seems to be a reasonable place to split the two series not only due to the two autocorrelation graphs shown so far, but due to historical events in US history.  1954 is 9 years after the end of World War II and in my opinion is a good place to split birth rates.  
1909 – 1945

The following graph shows the autocorrelation of first differences for years 1909 – 1945 only.

[image: image3.emf]Autocorrelation of First Differences - 1909 to 1945
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The autocorrelation declines quickly to zero and mainly stays within 0.15 of zero.  This is not close enough to zero to imply that this is a white noise process.  The autocorrelation of second differences was also analyzed but the graph did not appear to improve on the autocorrelation of first differences.  The second differences can be seen in the attached excel spreadsheet.  This series could be fit to an ARIMA(1,1,0) or ARIMA(2,1,0) model.
Using Excel Regression I fit the first differences to an ARIMA(1,1,0) model.  The least squares estimates give phi(1) = 0.111 and delta = -0.250.  This creates an ARIMA(1,1,0) model of:
Y(t) = 0.111Y(t-1) – 0.250 + e(t)

The least squares estimates for the ARIMA(2,1,0) are phi(1) = 0.121, phi(2) = -0.120 and delta = -0.273.  This creates an ARIMA(2,1,0) model of:

Y(t) = 0.121Y(t-1) – 0.121Y(t-2) -0.273

First I will investigate whether or not these models are stationary.  For the ARIMA(1,1,0) model to be stationary the absolute value of phi(1) must be less than zero, which it is.  The following three conditions are required for the ARIMA(2,1,0) to be stationary:

· phi(1) + phi(2) must be less than 1

· phi(2) – phi(1) must be less than 1

· The absolute value of phi(2) must be less than 1

All three of the above conditions are true, so the ARIMA(2,1,0) model is stationary.

Next I will investigate whether the means of the models are close to the average values of the first differences.  The mean of the ARIMA(1,1,0) model is calculated as delta / (1 – phi(1)).  In this case the model mean is -0.282 which is close to the mean of first differences of -0.3.  The mean of the ARIMA(2,1,0) model is delta / (1 – phi(1) – phi(2)).  In this case the model mean is -0.274 which is also very close to the mean of first differences.

Next I look at the R-squared values.  The value for the ARIMA(1,1,0) model is 0.012, which is very low.  This means that although the ARIMA(1,1,0) model mean is close to the actual mean the model is probably not a good fit.  The R-squared value for the ARIMA(2,1,0) model is 0.026.  This indicates that although the mean is very close to the actual first differences mean the model is not a good fit.  However, the ARIMA(2,1,0) model is a better fit than the ARIMA(1,1,0) model.

The last thing I will do is determine whether or not the residuals of the two models form white noise processes by looking at the Durbin-Watson statistic and the Box-Pierce statistic.  
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A Durbin-Watson statistic of 2 or greater indicates that the residuals are a white noise process.  Since the Durbin-Watson statistics are so close to two and the correlations shown in the spreadsheet are so close to zero the Durbin-Watson statistic indicates that the residuals are a white noise process.  The Box-Pierce statistics for 25 lags are less than the chi-squared critical value at 10% significance with 24 degrees of freedom.  Since the Box-Pierce statistic is lower than the critical value we cannot reject the hypothesis that the residuals are a white noise process.  Both tests indicate that the residuals are probably white noise processes.
1946 – 2003
The following graph shows the autocorrelation of first differences for years 1946 – 2003 only.

[image: image5.emf]Autocorrelation of First Differences - 1946 to 2003
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The autocorrelation declines quickly to zero and stays within 0.20 of zero.  This is not close enough to zero to imply that this is a white noise process.  The autocorrelation of second differences was also analyzed but the graph did not appear to improve on the autocorrelation of first differences.  The second differences can be seen in the attached excel spreadsheet.  This series could be fit to an ARIMA(1,1,0) or ARIMA(2,1,0) model.

Using Excel Regression I fit the first differences to an ARIMA(1,1,0) model.  The least squares estimates give phi(1) = 0.446 and delta = -0.093.  This creates an ARIMA(1,1,0) model of:

Y(t) = 0.446Y(t-1) – 0.093 + e(t)
The least squares estimates for the ARIMA(2,1,0) are phi(1) = 0.441, phi(2) = 0.025 and delta = -0.090.  This creates an ARIMA(2,1,0) model of:

Y(t) = 0.441Y(t-1) + 0.025Y(t-2) -0.090
First I will investigate whether or not these models are stationary.  For the ARIMA(1,1,0) model to be stationary the absolute value of phi(1) must be less than zero, which it is.  The following three conditions are required for the ARIMA(2,1,0) to be stationary:

· phi(1) + phi(2) must be less than 1

· phi(2) – phi(1) must be less than 1

· The absolute value of phi(2) must be less than 1

All three of the above conditions are true, so the ARIMA(2,1,0) model is stationary.

Next I will investigate whether the means of the models are close to the average values of the first differences.  The mean of the ARIMA(1,1,0) model is calculated as delta / (1 – phi(1)).  In this case the model mean is -0.169 which is fairly close to the mean of first differences of -0.2.  The mean of the ARIMA(2,1,0) model is delta / (1 – phi(1) – phi(2)).  In this case the model mean is -0.168 which is also fairly close to the mean of first differences.

Next I look at the R-squared values.  The value for the ARIMA(1,1,0) model is 0.229, which fairly low.  This means that the model may not be a good fit.  The R-squared value for the ARIMA(2,1,0) model is 0.230.  This indicates that the two models have similar fits.  The means and the R-squared values are almost the same for the two models.  In cases where the addition of an additional variable does not improve the model the model with fewer variables is better to use.  For this reason the ARIMA(1,1,0) model is the better model to use for this data set.
The last thing I will do is determine whether or not the residuals of the two models form white noise processes by looking at the Durbin-Watson statistic and the Box-Pierce statistic.  
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A Durbin-Watson statistic of 2 or greater indicates that the residuals are a white noise process.  The Durbin-Watson statistics are less than two which indicates that the residuals may or may not be a white noise process.  The Box-Pierce statistics for 40 lags are less than the chi-squared critical value at 10% significance with 39 degrees of freedom.  Since the Box-Pierce statistic is lower than the critical value we cannot reject the hypothesis that the residuals are a white noise process.  
Model Forecasting

Below are forecasts based on the four ARIMA models created by least squares estimation.  For the 1909-1945 series I forecasted first differences for years 1938-1945 based on the 1936 first difference for the ARIMA(1,1,0) model and 1936-1937 for the ARIMA(2,1,0) model.  We can see in the chart titled 1909-1945 Forecast that the two models create very similar forecasts and do not match the actual first difference results very well.  All of the forecasts are right around -0.25 while the variation in actual first differences range from about -1.5 to 2.0.  A more complex model will be needed to provide accurate forecasting.
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For the 1946-2003 series I forecasted first differences for years 1996-2003 based on the 1995 first difference for the ARIMA(1,1,0) model and 1995-1996 for the ARIMA(2,1,0) model.  We can see in the chart titled 1946-2003 Forecast that the two models are almost indistinguishable in their forecasts and do not match the actual first difference results very well.  The model is trending towards a value of about -0.17, while the actual first differences range from -0.3 to 0.2.  A more complex model will be needed to provide accurate forecasting.
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Conclusion
For each time period the ARIMA models created provided very similar if not almost indistinguishable forecasts of future first differences.  Unfortunately, none of the models were good fits to the data for either time period studied.  We may need a more complicated model to correctly forecast future birth rates.
