TS module 12: Method of moments for $\operatorname{ARMA}(1,1)$ process (practice problem)
(The attached PDF file has better formatting.)
Know how to estimate ϕ and θ for an $\operatorname{ARMA}(1,1)$ process by the method of moments. You solve a quadratic equation for θ.

Exercise 1.2: ARMA(1,1) model and method of moments (Yule-W alker equations)
An ARMA $(1,1)$ model is fit to a time series with sample autocorrelations for the first two lags of $r_{1}=0.880$ and $r_{2}=0.704$.
A. What is the method of moments estimate for ϕ ?
B. What is the method of moments estimate for θ ?

Part A: For an ARMA(1,1) process, $\mathrm{r}_{2}=\mathrm{r}_{1} \times \phi \Rightarrow \phi=0.704 / 0.880=0.8$
Part B: For an $\operatorname{ARMA}(1,1)$ process (for $\mathrm{k} \geq 1): \rho_{k}=\frac{(1-\theta \phi)(\phi-\theta)}{1-2 \theta \phi+\theta^{2}} \phi^{k-1}$
We estimated ϕ as r_{2} / r_{1}. We estimate θ from $r_{1}=\frac{(1-\theta \hat{\phi})(\hat{\phi}-\theta)}{1-2 \theta \hat{\phi}+\theta^{2}}$

See Cryer and Chan, equation 7.1.6 on page 151.
In this exercise, $0.880=(1-0.8 \theta)(0.8-\theta) /\left(1-2(0.8 \theta)+\theta^{2}\right)$.
This is a quadratic equation in θ, with roots of -0.4 and -2.5 (use the formula for roots of a quadratic).
The arithmetic is shown below; most final exam problems use simple numbers.
$0.880=(1-0.8 \theta)(0.8-\theta) /\left(1-2(0.8 \theta)+\theta^{2}\right)$
$0.880 \times\left(1-2(0.8 \theta)+\theta^{2}\right)=(1-0.8 \theta)(0.8-\theta)$
$88 \times\left(1-2(0.8 \theta)+\theta^{2}\right)=(10-8 \theta)(8-10 \theta)$
$88-140.8 \theta+88 \theta^{2}=80-164 \theta+80 \theta^{2}$
$8+23.2 \theta+8 \theta^{2}=0$
Using the formula for the roots of a quadratic equation gives
$\left(8^{2} \pm\left(23.2^{2}-4 \times 8 \times 8\right)\right) /(2 \times 8)=-0.4$ and -2.5

