TSS module 9 Time series differencing

Cryer and Chan show how differencing converts a non-stationary ARIMA process to a stationary time series.

** Question 1.2: Linear over three time points

Suppose that $Y_t = M_t + e_t$ with $M_t = M_{t-1} + \epsilon_t$

The time series M(t) is linear over *three* consecutive points, so the least squares estimator of M(t) is $\frac{1}{3}$ (Y_{t-1} + Y_t + Y_{t+1})

Which of the following is stationary?

A. Y(t)B. $\nabla Y(t)$ C. $\nabla^2 Y(t)$ D. $\frac{1}{3} \sum Y(t)$ E. Y(t) - Y(t-1) + Y(t-2)Answer 1.2: C

If M_t is linear over three points, the best estimate for M_t is the centered moving average of three Y_t values:

$$\hat{M}_{t} = \frac{1}{3} \left(Y_{t+1} + Y_{t} + Y_{t-1} \right)$$

If we remove the trend, the time series is stationary.

$$Y_t - \hat{M}_t = Y_t - \frac{1}{23} \left(Y_{t+1} + Y_t + Y_{t-1} \right)$$

Simplify the right hand side of this equation:

$$= -\frac{1}{3} (Y_{t+1} - 2 Y_t + Y_{t-1})$$

 $= -\frac{1}{3} \nabla (\nabla Y_{t+1})$

 $= -\frac{1}{3} \nabla^2(Y_{t+1})$

See Cryer and Chan, chapter 5, page 91

**Question 1.3: First difference

Suppose $Y_t = M_t + e_t$ and $M_t = M_{t-1} + e_t$

What is ∇Y_t (the first difference of Y_t)?

Answer 1.3: D

(See Cryer and Chan, chapter 5, page 90, Equation 5.1.9)

 $\nabla \mathbf{Y}_{t} = \mathbf{Y}_{t-}\mathbf{Y}_{t-1} = \mathbf{M}_{t} + \mathbf{e}_{t} - (\mathbf{M}_{t-1} + \mathbf{e}_{t-1}) = \mathbf{e}_{t} + \mathbf{e}_{t} - \mathbf{e}_{t-1}$

Final exam problems give $Y_t = \mathbf{k} \times M_t + e_t$ (where k is a scalar) and the variances of e_i and e_t . You must work out variances, auto-covariances, and autocorrelations.

**Question 1.4: ARIMA(p,1,q) process

An ARIMA(p,1,q) process Y_t has first differences ∇Y_t that are an ARMA(p,q) process with parameters ϕ_i and θ_j .

The ARIMA(p,1,q) process is written as a *non-stationary* moving average process ARMA(p+1, q).

What is the coefficient of Y_{t-2} in the non-stationary ARMA(p+1, q) process?

A. $1 - \phi_2$

- B. $\phi_1 \phi_2$
- C. $\phi_2 \phi_1$
- $\Delta. \quad \varphi_2 1 \\ E. \quad 1 \varphi_1 \varphi_2$

Answer 1.4: C

See equation 5.2.2 on page 92.

Intuition: The ARIMA(p,q) process is

 $Y_{t} - Y_{t-1} = \phi_{1} (Y_{t-1} - Y_{t-2}) + \phi_{2} (Y_{t-2} - Y_{t-3}) + \dots + \phi_{p} (Y_{t-p} - Y_{t-p-1}) + \varepsilon_{t} - \theta_{1} \varepsilon_{t-1} - \theta_{2} \varepsilon_{t=2} - \dots - \theta_{q} \varepsilon_{t-q}$

Rewrite this as

 $Y_{t} = (1 + \phi_{1}) Y_{t-1} + (\phi_{2} - \phi_{1}) Y_{t-2} + (\phi_{3} - \phi_{2}) Y_{t-3} + \dots + (\phi_{p} - \phi_{p-1}) Y_{t-p} + \epsilon_{t} - \theta_{1} \epsilon_{t-1} - \theta_{2} \epsilon_{t=2} - \dots - \theta_{q} \epsilon_{t-q}$

**Question 1.5: ARIMA(p,1,q) process

An ARIMA(p,1,q) process Y_t has first differences ∇Y_t that are an ARMA(p,q) process with parameters ϕ_i and θ_j .

The ARIMA(p,1,q) process is written as a *non-stationary* moving average process ARMA(p+1, q).

What is the coefficient of $\varepsilon_{t\text{-}2}$ in the non-stationary ARMA(p+1, q) process?

 $\begin{array}{lll} A. & -\theta_2 \\ B. & 1-\theta_2 \\ C. & \theta_1-\theta_2 \\ D. & \theta_2-\theta_1 \\ E. & \theta_2-1 \end{array}$

Answer 1.5: A

See equation 5.2.2 on page 92.

Intuition: The ARIMA(p,q) process is

$$Y_{t} - Y_{t-1} = \phi_{1} (Y_{t-1} - Y_{t-2}) + \phi_{2} (Y_{t-2} - Y_{t-3}) + \dots + \phi_{p} (Y_{t-p} - Y_{t-p-1}) + \epsilon_{t} - \theta_{1} \epsilon_{t-1} - \theta_{2} \epsilon_{t-2} - \dots - \theta_{q} \epsilon_{t-q}$$

Rewrite this as

$$Y_{t} = (1 + \phi_{1}) Y_{t-1} + (\phi_{2} - \phi_{1}) Y_{t-2} + (\phi_{3} - \phi_{2}) Y_{t-3} + \dots + (\phi_{p} - \phi_{p-1}) Y_{t-p} + + \epsilon_{t} - \theta_{1} \epsilon_{t-1} - \theta_{2} \epsilon_{t=2} - \dots - \theta_{q} \epsilon_{t-q}$$

The coefficients of the error terms $\varepsilon_{\text{t-k}}$ remain unchanged; they are the negatives of the moving average parameters.