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Time Series Student Project

Summer 2010

Monthly US Beer Sales

Introduction

For this project we will look at monthly beer sales in the US.  The overall objective will be to fit an ARIMA model to the data.  In completing this objective, we will cover testing and adjusting for seasonality, testing for stationarity, and model diagnostics.
Data

These data are from the Alcohol Policy Information System of the National Institute on Alcohol Abuse and Alcoholism
.  A description of the data set can be found at the following address, but the actual data must be requested from the Institute: http://www.alcoholpolicy.niaaa.nih.gov/Data_System_Details.html.  
The data represent monthly sales of beer for each US state from 1948 to 2001.  Let Yt denote the number of barrels of beer sold in month t with month 1 corresponding to January 1948.  We first examine the data for anomalies.  Of the 32,772 records, it was necessary to correct 5 entries.  Details of the adjustments and the specific reasons for each are discussed in columns H and I of the ‘Adjusted Data’ tab.

We wish to study countrywide data, so we aggregate the monthly sales figures across all states to produce the table in the ‘Countrywide Data’ tab.  Examining a graph of the countrwide data shows that there appear to be three distinct periods in the series.  From 1948 to 1962 there appears to be slow, linear growth.  From 1964 to 1980 there appears to be a period of more rapid, linear growth.  From 1982 to 2001 there appears to be a second period of slow, linear growth.
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Chart 1
This project will focus on modeling the third period of the series, from 1982 to 2001.

We want to reserve a portion of the data for an ex-post forecast to be able to judge the performance of the selected model.  We will use the period from 1982 to 1996 to develop the ARIMA model and the final five years from 1997 to 2001 to validate the model.
Shown below is a graph of just the data we will use to construct our model.  This graph shows a clear annual, cyclical pattern.
[image: image2.emf]Barrels of Beer Sold per Month in the US

1982 - 1996

10,000,000

11,000,000

12,000,000

13,000,000

14,000,000

15,000,000

16,000,000

17,000,000

18,000,000

19,000,000

20,000,000

0 12 24 36 48 60 72 84 96 108 120 132 144 156 168 180

Month (starting with Jan 1982)

Barrels of Beer Sold



Chart 2
Seasonality

As discussed, a graph of the data themselves shows a cyclical pattern.  We can confirm the existence of a 12 month seasonal cycle by examining a graph of the sample autocorrelations.  Here we see peak sample autocorrelation values at 12 month intervals, confirming a 12 month cycle
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Chart 3
This observed seasonality conforms with what we would expect to see – specifically, beer sales are higher for the Northern Hemisphere’s summer months when temperatures in the US are highest.

Deseasonalization

Given that we have a seasonal process, we will deseasonalize the data by taking a 12 month moving average of our data.  Let Dt = (Yt-6 + Yt-5 + Yt-4 + Yt-3 + Yt-2 + Yt-1 + Yt + Yt+1 + Yt+2 + Yt+3 + Yt+4 + Yt+5)/12
Two graphs of the deseasonalized series, Dt, appear below.  The first graph has the same scale as Chart 2.  This shows the extent of the smoothing accomplished by the 12 month moving average (calculations in ‘Deseasonalized Data’ tab).
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Chart 4

The second graph’s axes are more appropriate to the scale of the data being shown and reveal the variation within the data series.
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Chart 5
The correlogram of the deseasonalized data is shown below.
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Chart 6

These sample autocorrelations decline to zero, although not very quickly.  Based on a desire to avoid overdifferencing, we will tentatively conclude that the deseasonalized process is stationary.  The correlogram clearly shows that there are no spikes in the sample autocorrelation which would indicate a moving average model.  Given that, we will proceed to investigate autoregressive models.

Model Specification Round 1
Having determined above that we are dealing with an autoregressive, stationary model, we will proceed to model our data using AR(1), AR(2), AR(3), and AR(4) models.  The calculations needed to fit each model, as well as the goodness of fit tests discussed below are carried out in the AR(1), AR(2), AR(3), and AR(4) tabs.  Specifically, we use excel’s regression add-in to calculate our model parameters.  Those calculations yield the following results. (Where Dt = (0 + ((nDt-n)
	Model Parameters

	Model
	(0 (constant)
	(1
	(2
	(3
	(4

	AR(1)
	441,096
	0.9719
	
	
	

	AR(2)
	461,063
	0.8981
	0.0726
	
	

	AR(3)
	463,613
	0.8918
	0.0220
	0.0566
	

	AR(4)
	555,561
	0.9008
	0.0161
	0.2454
	-0.1976


	Model Statistics

	Model
	Adjusted R2
	Durbin- Watson
	Box-Pierce Q
	Chi-Squared (10%)
	((

	AR(1)
	0.9568
	2.1095
	73.2681
	44.9032
	0.9719

	AR(2)
	0.9562
	1.9847
	65.7484
	43.7452
	0.9706

	AR(3)
	0.9552
	1.9385
	66.0766
	42.5847
	0.9705

	AR(4)
	0.9563
	1.8930
	55.8732
	41.4217
	0.9645


The Adjusted R2 value is provided directly by the regression add-in.  The Durban-Watson statistic is calculated in columns O:Q of each worksheet using the residuals provided by the regression add-in.  The Box-Pierce Q statistic is shown for the first 35 lags, and in the column next to it, the Chi-Squared critical value for the degrees of freedom determined by the model and number of lags.  The Box-Pierce statistic is calculated in columns S:X of each tab.
While the adjusted R2 and Durbin-Watson statistics are fairly good for all four models, the Box-Pierce Q statistic is well above the critical value in each case.  This implies that our model is not a good fit to the data.  This could potentially be because we were incorrect in concluding that the process was stationary.
Differencing
In an attempt to correct for the problem observed above, we will take a first difference of the time series and proceed again with our modeling.  The calculations of first differences appears on the ‘Differenced Data’ tab.  Let Mt = (Dt = Dt – Dt-1 so that Mt is a series of first differences of deseasonalized data.  A graph of Mt appears below.
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Chart 7

The correlogram of Mt is shown below.
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Chart 8
Again, the sample autocorrelations slowly decline to zero, although in this case they are much more stochastic and jump from positive to negative more frequently.  Looking at this graph, there are a number of values that are higher than the neighboring values, but none that appear to be spikes indicating that a moving average term would be appropriate.
Model Specification Round 2

As before, we will evaluate the fit of autoregressive models to our data.  Since we have taken the first difference of the original data, fitting an AR(p) process to the transformed data is equivalent to fitting an ARI(p,1) model to the original data.  We will consider ARI(1,1), ARI(2,1), ARI(3,1), and ARI(4,1) models.  The calculations needed to fit each model, as well as the goodness of fit tests discussed below are carried out in the ARI(1,1), ARI(2,1), ARI(3,1), and ARI(4,1) tabs.  Specifically, we use excel’s regression add-in to calculate our model parameters.  Those calculations yield the following results. (Where Mt = (0 + ((nMt-n)

	Model Parameters

	Model
	(0 (constant)
	(1
	(2
	(3
	(4

	ARI(1,1)
	3,580
	-0.0817
	
	
	

	ARI(2,1)
	3,789
	-0.0872
	-0.0642
	
	

	ARI(3,1)
	3,659
	-0.0744
	-0.0559
	0.1904
	

	ARI(4,1)
	4,236
	-0.0306
	-0.0679
	0.1758
	-0.2164


	Model Statistics

	Model
	Adjusted R2
	Durbin- Watson
	Box-Pierce Q
	Chi-Squared (10%)
	((

	ARI(1,1)
	0.0005
	1.9855
	65.6414
	44.9032
	-0.0817

	ARI(2,1)
	-0.0016
	1.9379
	63.4750
	43.7452
	-0.1514

	ARI(3,1)
	0.0294
	1.8886
	56.1657
	42.5847
	0.0602

	ARI(4,1)
	0.0677
	1.9539
	50.7717
	41.4217
	-0.1391


The Adjusted R2 value is provided directly by the regression add-in.  The Durban-Watson statistic is calculated in columns P:R of each worksheet using the residuals provided by the regression add-in.  The Box-Pierce Q statistic is shown for the first 35 lags, and in the column next to it, the Chi-Squared critical value for the degrees of freedom determined by the model and number of lags. The Box-Pierce statistic is calculated in columns T:Y of each tab.

Although the Durbin-Watson statistics are fairly good for all four models, the extremely low Adjusted R2 values indicate that these models are a terrible fit for our data, and again the Box-Pierce Q statistics exceed the Chi-Squared critical values in every case.  These models clearly do not fit our process very well.
Detrending

We will attempt to detrend the deseasonalized data in hopes that it will produce a series that can be more readily modeled by an ARIMA process.  Because the growth originally observed in Chart 1 appeared to be linear, we will fit a linear trend to the data.  We determine the trend using the regression add-in with the time index as the independent variable and the deseasonalized series as the dependent variable.
The regression output gives a coefficient of X of (approximately) 3,262.61, which is used to detrend the data to produce a detrended series Ht in column G of the ‘Detrended Data’ tab.  A graph of the series and its sample autocorrelations appear below.
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Chart 9

[image: image10.emf]Correlogram of H
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Chart 10

This correlogram declines quickly to zero, hovers near zero, for several lags, then dips below zero before gradually returning to zero.  Based on the initial rapid decline to zero, as well as the eventual return to zero, we will conclude that this is a stationary time series.  We see no evidence of a moving average process in this correlogram.
Model Specification Round 3

As before, we will evaluate the fit of autoregressive models to our data series.  We are not modeling a differenced series, so we will consider AR(p) models, specifically AR(1), AR(2), AR(3), and AR(4) models.  The calculations required to fit and evaluate each model are carried out in tabs AR’(1), AR’(2), AR’(3), and AR’(4).  Those calculations yield the following results. (Where Ht = (0 + ((nHt-n)
	Model Parameters

	Model
	(0 (constant)
	(1
	(2
	(3
	(4

	AR(1)
	701,575
	0.9541
	
	
	

	AR(2)
	673,469
	0.8985
	0.0574
	
	

	AR(3)
	646,583
	0.8950
	0.0201
	0.0427
	

	AR(4)
	839,159
	0.9044
	0.0145
	0.2440
	-0.2177


	Model Statistics

	Model
	Adjusted R2
	Durbin- Watson
	Box-Pierce Q
	Chi-Squared (10%)
	((

	AR(1)
	0.9088
	2.0818
	70.9031
	44.9032
	0.9541

	AR(2)
	0.9086
	1.9853
	64.7922
	43.7452
	0.9560

	AR(3)
	0.9078
	1.9481
	63.2421
	42.5847
	0.9577

	AR(4)
	0.9121
	1.8966
	54.2574
	41.4217
	0.9452


The Adjusted R2 value is provided directly by the regression add-in.  The Durban-Watson statistic is calculated in columns P:R of each worksheet using the residuals provided by the regression add-in.  The Box-Pierce Q statistic is shown for the first 35 lags, and in the column next to it, the Chi-Squared critical value for the degrees of freedom determined by the model and number of lags. The Box-Pierce statistic is calculated in columns T:Y of each tab.

We once again have a situation where the adjusted R2 and Durbin-Watson statistics are fairly good for all four models, but the Box-Pierce Q statistic is well above the critical value in each case.  This indicates a poor fit of the model to the data.  The poor fit could be cause by trying to fit an autoregressive model to nonstationary data.  We will attempt to create a stationary series by differencing to see if this corrects the problem.
Differencing
We will take a first difference of the deseasonalized, detrended time series and proceed again with our modeling.  Let Nt = (Ht = Ht – Ht-1 so that Nt is a series of first differences of detrended, deseasonalized data.  A graph of Nt and its correlogram appear below.  The calculations are in the ‘Revised Differenced Data’ tab. A graph of the series and its sample autocorrelations appear below.
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Chart 11
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Chart 12
Examination of the correlogram of Nt shows that the sample autocorrelations decline to zero, although very slowly and without significant spikes indicating a moving average process.  Based on our experience modeling the first differenced time series we worked with, this series may not be stationary, but we also want to avoid overdifferencing.
Model Specification Round 4
As before, we will evaluate the fit of autoregressive models to our data.  Since we have taken the first difference of the original series, we are in effect considering ARI(p,1) models, specifically ARI(1,1), ARI(2,1), ARI(3,1), and ARI(4,1).  The calculations needed to fit each model, as well as the goodness of fit tests discussed below are carried out in the ARI’(1,1), ARI’(2,1), ARI’(3,1), and ARI’(4,1) tabs.  We use excel’s regression add-in to calculate our model parameters.  Those calculations yield the following results. (Where Nt = (0 + ((nNt-n)

	Model Parameters

	Model
	(0 (constant)
	(1
	(2
	(3
	(4

	ARI(1,1)
	51
	-0.0817
	
	
	

	ARI(2,1)
	33
	-0.0872
	-0.0642
	
	

	ARI(3,1)
	592
	-0.0744
	-0.0559
	0.1904
	

	ARI(4,1)
	520
	-0.0306
	-0.0679
	0.1758
	-0.2164


	Model Statistics

	Model
	Adjusted R2
	Durbin- Watson
	Box-Pierce Q
	Chi-Squared (10%)
	((

	ARI(1,1)
	0.0005
	1.9855
	65.6414
	44.9032
	-0.0817

	ARI(2,1)
	-0.0016
	1.9379
	63.4750
	43.7452
	-0.1514

	ARI(3,1)
	0.0294
	1.8886
	56.1657
	42.5847
	0.0602

	ARI(4,1)
	0.0677
	1.9539
	50.7717
	41.4217
	-0.1391


The Adjusted R2 value is provided directly by the regression add-in.  The Durban-Watson statistic is calculated in columns Q:S of each worksheet using the residuals provided by the regression add-in.  The Box-Pierce Q statistic is shown for the first 35 lags, and in the column next to it, the Chi-Squared critical value for the degrees of freedom determined by the model and number of lags. The Box-Pierce statistic is calculated in columns U:Z of each tab.

As we observed when we first modeled differenced data, the Durbin-Watson statistics are fairly good for all four models.  However, since the Adjusted R2 values are very low and the Box-Pierce Q statistics exceed the Chi-Squared critical values in every case, we conclude that the tested models are not a good fit for our data.
Of some interest is the fact that apart from the constant term, all model parameters and summary statistics are the same here as they were when we modeled the first set of data which was not detrended.  This could have been anticipated
 since our assumption of a linear trend meant that the detrending procedure reduced each value by a linearly increasing amount.  This adjustment means  that the values of the second differenced series are less than the first differenced series by a fixed amount equal to the trend adjustment for a single period.  Thus, the shapes of the data series are the same, except for the intercept value.
Discussion
We have tried to fit a variety of simple ARI models to our data without success.  We did not attempt to fit any moving average terms to the data, but there was no indication that it would have been appropriate to do so.  Since we were unable to find any model that proved to be a good fit to our data, we did not proceed with an ex-post evaluation of a selected model.

Using simple AR(p) models we were able to explain a great deal of the observed variation of the series (as measured by the R2 and adjusted R2 models), but in each case, the Box-Pierce statistic indicated that the sizes of the residuals were well above what could be expected if the model accurately described our data.  Perhaps for some applications, the high R2 would have been enough to justify using the model, at least provisionally, with the idea that something is better than nothing.
Since we are basing our rejection of our models on the Box-Pierce statistic, it is worth briefly discussing that test.  The Box-Pierce (BP) is considered to be inferior to the Ljung-Box (LB) statistic.  However, the LB is a modification of the BP such that LB > BP.  This means that while the BP may lead to incorrectly accepting a poorly fitting model (at a given level of certainty), any model rejected by the Box-Pierce test would also be (correctly) rejected by the more accurate Ljung-Box test.  In our situation, we can be confident in our conclusions, even though we did not use the ideal goodness of fit test.

It is unclear what larger conclusions can be drawn about the data series based on our failure to fit an ARIMA(p,d,q) model to it.  Perhaps a more complex model (using higher values of p, d and/or q) would produce a better fit, although that does not appear likely.  Perhaps the trend was not linear and our assumption that it was is leading to the problems.  It is possible that the adjustment for seasonality we employed was not appropriate for these data.  It is also possible that this series is simply not suited to being modeled by an ARIMA process.
� Ponicki, W. R. (2004) Statewide Availability Data System II: 1933 - 2003.
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� Of course, if it actually had been anticipated, we could have avoided the trouble of modeling the second differenced series, but hindsight was clearer than foresight.





