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Introduction

One of my favorite things to eat is chocolate. I find that chocolates help me relieve my stress. Chocolate is many people’s favorite dessert. As candies, many people have their favorite type of chocolate – white, milk or dark. During the winter, hot chocolate is also a favorite drink for many people. Therefore, when I found data regarding chocolates, I decided to do my project regarding this subject that many people, including myself, are passionate about.

Data

For this project, I decided to look at the Australian monthly production of chocolate found on this website:
http://robjhyndman.com/tsdldata/data/choc.dat
The data is shown on the “Original Data” in the spreadsheet.
The data shows the monthly production of chocolate in tons in Australia from July 1957 to August 1995. For this project, I used a subset of the data available, January 1980 through August 1995. I then divided the data into 2 sub-groups:
· January 1980 through December 1989 as data points to create my model (shown on the “Predictor Data” tab in the spreadsheet)
· January 1990 through August 1995 as data points to test the accuracy of my model (shown on the “Check Results” tab in the spreadsheet)
Before I perform any modeling, here is a graph of the January 1980 through December 1989 data:
[image: image1.emf]Monthly Chocolate Production
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As we can see from the graph above, we can see that generally, the data trends upwards. In addition, we can also see that there seems to be a seasonal trend of 12-month cycle. Every twelve months, there seems to be an upward trend and then a downward trend, which is consistently repeated every twelve months. This graph is shown on the “Predictor Data” tab in the spreadsheet.
In order to confirm this trend, I decided to perform an autocorrelation function on the data for the various lags. 
[image: image2.emf]Autocorrelation Function of Original Series
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The correlogram above confirms the seasonality of data (The production of the correlogram above is shown on the “Calculation (Original Data)” tab). We could see significant peaks at all of the lags in multiples of twelve. We can use the correlogram to show that this original time series is probably not a white noise process. In a white noise process, the sample correlations are approximately normal with a zero mean and a standard deviation of square root of (1/T). Using Bartlett’s test with 95% confidence level, we calculate a statistic of square root of (1/120) * 1.96, which is equal to 0.1789. The correlogram above shows many points with absolute values greater than 0.1789, therefore we are 95% confident that the actual correlation of the original data is not equal to zero.
Since we could see clearly that the data has a seasonal annual pattern, I decided to deseasonalize the data before I create a model for the data. Since the pattern of the data is annual, I decided to subtract the previous year data. Therefore, a modeling of this data, i.e. yt – yt-12, is performed. In this case, yt denotes the sales data at time t, and yt-12 denotes the sales data for the previous year. Therefore, the first data point considered would be the difference between the sales data from January 1980 and January 1981. This also means that for the model, less data points are considered. In the original data, we have 120 data points of monthly chocolate production for 10 years. In this modified data, we have 108 data points of differences in monthly chocolate production data. 
Below is a graph of the modified data,

[image: image3.emf]Seasonally Adjusted Data
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These sample autocorrelation values decline to zero, although not very quickly.  Based on a desire to avoid overdifferencing, we will tentatively conclude that the deseasonalized process is stationary.  The correlogram clearly shows that there are no spikes in the sample autocorrelation which would indicate a moving average model.  Given that, we will proceed to investigate autoregressive models.

Now, I will proceed with the analysis to find which ARMA model fits the deseasonalized data best.

Model Specification

Using the seasonally adjusted data, I performed linear regression functions in Excel (shown in the “Regression (Adjusted Data)” tab):

AR (1): Yt = 347.22 + 0.0590Yt-1
AR (2): Yt = 273.91 + 0.0429Yt-1 + 0.2310Yt-2
AR (3): Yt = 247.64 + 0.0358Yt-1 + 0.2339Yt-2 + 0.0566Yt-3
Please note that the calculation of the Durbin-Watson and Box-Pierce Q statistics are shown below the data in the tab mentioned above. Here is a summary of the statistics:
	Model
	AR (1)
	AR (2)
	AR (3)

	Durbin-Watson
	2.03
	2.00
	2.03

	Box-Pierce Q
	103.97
	82.63
	79.34

	Chi-Squared (10%)
	121.77
	120.68
	119.59

	Sum of Coefficients
	0.06
	0.27
	0.33


The Durbin-Watson statistics will help us determine whether the residuals are correlated. All the Durbin-Watson values of the three models are around 2, indicating that the residuals do not seem to be correlated. 

Next, we will look at the results of the Box and Pierce test. If the calculated Q statistic is less than the value in the chi-square table, then we do not reject the hypothesis that the residuals are white noise; therefore we can accept the model. The smaller the Q-statistic compared to the chi-squared values, the better the model is. Looking at the summary table above, we can see that at the ten percent significant level, we would not reject any of the AR models.
Next, in order for a model to be stationary, the sum of the coefficients must be less than one. Since the absolute values of the sums of the coefficients in all the three models are less than 1, this indicates that the models are stationary.

From the descriptions above, any of the models would be a good representation of the monthly chocolate production data. Since the AR(3) model has the smallest Q-statistic compared to the chi-squared value, therefore, I picked this model as the best fit model for the data that we have.

Model Evaluation

In order to test the fit of the model, I used the regression model chosen from the previous section to forecast the monthly chocolate production numbers from January 1990 to August 1995, and compare the predicted values against the actual values. Since the regression model used the deseasonalised data, to predict the monthly chocolate production values, we need to add the value of the previous year’s production values to obtain the predicted numbers.

In the chart below, we look at the actual monthly chocolate production values, versus the predicted values.


To recap, we are using the regression model below:

AR (3): Yt = 247.64 + 0.0358Yt-1 + 0.2339Yt-2 + 0.0566Yt-3
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We can see from the graph above that the regression model seems to predict the monthly chocolate production values well. It seems to be able to predict the pattern of the forecasted values well.
Conclusion

Both the graph and statistical analysis confirm our results that the AR(3) model predicts the model well. We can see from the graph above that the pattern for the predicted values closely match that of the actual values.
However, the regression model could not closely predict the extreme values, i.e. peaks and troughs, of the data. To better forecast the monthly chocolate production values, a more robust time series model would be needed.
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