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Introduction
Every actuarial candidate knows all too well the importance of passing the Society of Actuaries preliminary examinations.  We all have been triumphant or have fallen short in at least one exam in our quest to achieve the coveted FSA.  But can we predict the pass rate for a group of candidates at a particular company for the SOA exams using time series analysis?  This is the question that we seek to answer in the following paper.  Using pass rate data over the last 15 years from my own company, I will attempt to fit an ARIMA model to see if I can uncover a discernible pattern.
Data
I am using data from my own company’s records that keeps track of our exam pass rate per sitting versus the pass rate for the entire population of SOA candidates.  The sample of students sitting for exams per test-taking period ranges from 6 to 14.  Since we have data dating back to May 1995, and with two test-taking periods per year, we will have 30 data points.  We recognize that this sample is a bit smaller than what we ideally would like to have, but we will have to make do with the data available.
Model Specification

The first step in analyzing any time series is to look at the actual time series itself.  Looking at the pass rate data for my company (on the following page), we see a very jagged pattern.  This immediately lead me to think that an autoregressive process with a negative (, or a moving average process with positive ( would be appropriate.  This is because for an AR(1) process with ( < 0, the time series oscillates about the mean.  Also, a MA(1) process with ( > 0 can cause a jagged pattern since if a value is higher (lower) than expected in a particular period, the moving average parameter will contribute to the value being lower (higher) in the following period. 
 As a real-life application, this type of series makes sense.  Due to the relatively small number of candidates taking an exam in each period, it seems reasonable that if the number of passed exams was lower than average in one sitting, then the next sitting may most likely be higher than average since those who failed will have to re-take the same test in the next sitting, and therefore should be more familiar with the subject and better prepared to pass.  On the flip side, if there were more passes than average in a sitting, then next sitting there will be more candidates taking an exam for the first time and may have a higher chance of failure.  Also, if a great batch of candidates had been passing exams every sitting and have finally obtained the FSA designation, then the pass rate will drop in the subsequent sittings as these above-average candidates (now fellows!) are no longer taking part in the examination process.  
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Figure 1:  The pass rate data per sitting features a prevalent jagged pattern
However, an issue with our time series is that it may not be stationary.  The time series seems to show a slight trend downward as it progresses.  In order to determine whether or not the time series is stationary, as well as which is preferable between an AR model and a MA model, we will examine the correlograms.

The correlogram on the next page shows characteristics of a non-stationary time series.  We do not see the autocorrelations decreasing geometrically to zero as we would expect with an autoregressive process.  In particular, the autocorrelations are not oscillating about zero as we would have expected with our analysis above.  Also, there is no sudden drop off to zero like we would expect to see in a moving average process at a lag greater than the number of parameters in the model (which we expect to be no more than one or two in our small sample).  Most significantly, there is a distinct pattern as the autocorrelations decrease to zero (in a jagged manner), then cross below zero, and stay there for several more lags.  For these reasons, we can conclude non-stationarity in our model and will proceed to examining the first differences.
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Figure 2:  The correlogram of the original time series shows characteristics of non-stationarity

The first difference of the company’s exam pass rate data displays the same jagged pattern as the original time series, but this time it appears more closely centered about a constant mean than did the original time series.  Again, we will have to examine correlograms to identify stationarity, as well as which model among an ARI or an IMA process would be best as a starting point. 
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Figure 3:  The first difference of the exam pass rate appears to be a stationary time series exhibiting the same oscillating properties as the original.

The correlogram of the first differences shows a pattern that is quite characteristic of an AR(1) process where ( < 0, as we had suspected would be appropriate.  This is prevalent by the oscillating pattern of the sample autocorrelations about zero as they geometrically decrease toward zero.  Due to having a small sample of only 29 observations (we must subtract one from our original 30 observations for the time series of first differences), we expect the standard noise of the white noise component to be relatively large.  In fact, we have
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Hence, after about lag 2 we are really unsure if the deviations about 0 are due to the autoregressive parameter or just white noise.  However, despite this, the jagged pattern about 0 is still very apparent even for the latter lags.
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The graphs favor the specification of an autoregressive model.  Before we jump into the parameter estimation step of ARIMA modeling, we will make a few predictions using the theory of ARIMA processes to explain what we expect to see.  This will be useful to us as we proceed to the model diagnostics step as we can compare the results to our expectations.

1. AR(1) Model:  Since our first autocorrelation is approximately -0.45, we might expect (= -0.45.  If this is the case, we would expect the autocorrelation at lag 2 to be approximately (-0.45)2 = 0.2025, which is not the case.  We are predicting a positive value at lag 2 when it is in fact negative.  Theoretically, the lag 3 autocorrelation should be roughly (-0.45)3 = -0.091125.  However, this is within two standard deviations of the sample autocorrelation of 0.2323 (see calculation below).  At this point, all sample autocorrelations are within two standard deviations of their theoretical autocorrelations, so we can be comfortable with this type of model (assuming the parameter estimation process gives us ( [image: image7.png]


 -0.45).  On the other hand, we may want to examine a higher order autoregressive model.
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The lag 3 sample autocorrelation is approximately 1.74 standard deviations away from the theoretical (3

2. AR(2)  Model:  We can calculate the theoretical coefficients using the Yule-Walker equations:
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Hopefully the added parameter will aid us in replicating the pattern we see in the sample autocorrelations where it takes two lags before the autocorrelations changes signs for the first couple lags, followed by a more consistent oscillatory pattern for the next few lags.
3. MA(1) / ARMA(1,1) Models:  Since we do not have a tool to do non-linear regression, we will use the theoretical parameter estimates from the Yule-Walker equations to create these models.  We will defer these calculations to the parameter estimation section.
Parameter Estimation
The parameters for the AR processes are calculated using Excel’s regression analysis tools.  The parameters for the MA and ARMA processes are calculated by hand using the Yule-Walker equations.  We use the stationary first-differenced time series, so we are actually computing ARI, IMA, and ARIMA processes on the original time series.

1. AR(1) Model:  Yt = -0.05208 – 0.46553Yt-1 + et
This meets the condition of stationarity for a first degree autoregressive process: |φ1| < 1
Also, we can see that this is very close to our initial prediction of φ1 [image: image12.png]


 -0.45, but for reasons discussed in the model specification section, this first degree model may not be appropriate.  So we will try a more complex mode.

2. AR(2) Model:  Yt = 1.88787 – 0.72195Yt-1 – 0.66495Yt-2 + et
This model meets the conditions for a stationary second degree, which are:

φ1 + φ2 < 1, φ1 – φ2 < 1 and  |φ2| < 1 
3. AR(3) Model:  Yt = 2.553198 – 0.9572Yt-1 – 0.9707Yt-2 – 0.4295Yt-3 + et
We will check the appropriateness of this more complex model over the AR(2) model in the model diagnostics sections.

4. MA(1) Model:
We can calculate the coefficient for this model by hand using the following formula:
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5. ARMA(1,1) Model:
We can calculate the coefficients for this model by solving the following system of nonlinear equations:
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Solving this quadratic equation for ( results in a complex solution.  Hence, this model is inappropriate.
Model Diagnostics

Since we do not have the computational capability to display summary statistics for the MA or ARMA models, we will display the summary statistics for the AR models only here:
1. AR(1)
	Regression Statistics

	Multiple R
	0.47434

	R Square
	0.224998

	Adjusted R Square
	0.196295

	Standard Error
	19.46375

	Observations
	29

	 
	Coefficients
	Standard Error
	t Stat
	P-value
	Lower 95%
	Upper 95%
	Lower 95.0%
	Upper 95.0%

	Intercept
	-0.05208
	3.614668
	-0.01441
	0.988611
	-7.46876411
	7.364606
	-7.46876
	7.364606

	X Variable 1
	-0.46553
	0.166275
	-2.79976
	0.00933
	-0.80669663
	-0.12436
	-0.8067
	-0.12436


We can see from the summary statistics that φ is statistically significant at the 5% (or even the 1%) level.  However, the R2 value is quite low, so we will want to consider a higher-order model.
2. AR(2)

	Regression Statistics

	Multiple R
	0.713255

	R Square
	0.508733

	Adjusted R Square
	0.469432

	Standard Error
	15.45186

	Observations
	28

	 
	Coefficients
	Standard Error
	t Stat
	P-value
	Lower 95%
	Upper 95%
	Lower 95.0%
	Upper 95.0%

	Intercept
	1.88786976
	2.936346
	0.642932
	0.526122
	-4.15965
	7.9353875
	-4.159648
	7.93538751

	X Variable 1
	-0.7219507
	0.15413254
	-4.68396
	8.45E-05
	-1.03939
	-0.404509
	-1.0393926
	-0.4045088

	X Variable 2
	-0.6649475
	0.1664464
	-3.99496
	0.000502
	-1.00775
	-0.322145
	-1.0077503
	-0.3221447


Again, we can see that both φ1 and φ2 are statistically significant from the summary statistics.  The significance for both parameters is even greater than in the previous model.  Also, our R2 value has greatly improved, though still may not be as high as we would hope.  We will consider going one step farther.
3. AR(3)

	Regression Statistics

	Multiple R
	0.765421

	R Square
	0.585869

	Adjusted R Square
	0.531852

	Standard Error
	14.65292

	Observations
	27

	 
	Coefficients
	Standard Error
	t Stat
	P-value
	Lower 95%
	Upper 95%
	Lower 95.0%
	Upper 95.0%

	Intercept
	2.553198
	2.8642793
	0.891393
	0.381949
	-3.372016
	8.4784107
	-3.372016
	8.478411

	X Variable 1
	-0.9572
	0.1904385
	-5.0263
	4.37E-05
	-1.351154
	-0.56325
	-1.351154
	-0.56325

	X Variable 2
	-0.97074
	0.2114797
	-4.59022
	0.000129
	-1.408216
	-0.533258
	-1.408216
	-0.533258

	X Variable 3
	-0.4295
	0.2020417
	-2.12581
	0.044473
	-0.847457
	-0.011547
	-0.847457
	-0.011547


All three parameters are again statistically significant at the 5% level, though φ3 is very close to the threshold.  Our R2 value of approximately 0.59 tells us that nearly 60% of the volatility in our data can be explained by these autoregressive components.  The improvement in R2 from the AR(2) is great enough for us to consider that the added complexity of a third parameter may be worth it.  However, it will also be worth it for us to try going yet another step farther to see if any additional improvements can be made.
4. AR(4)

	Regression Statistics

	Multiple R
	0.7653265

	R Square
	0.5857247

	Adjusted R Square
	0.5068151

	Standard Error
	15.320774

	Observations
	26

	 
	Coefficients
	Standard Error
	t Stat
	P-value
	Lower 95%
	Upper 95%
	Lower 95.0%
	Upper 95.0%

	Intercept
	2.72429548
	3.142985882
	0.8667858
	0.395856
	-3.811901
	9.260492
	-3.811901
	9.260492

	X Variable 1
	-0.961983
	0.219411623
	-4.384376
	0.000259
	-1.418274
	-0.50569
	-1.418274
	-0.50569

	X Variable 2
	-0.994039
	0.30477009
	-3.261603
	0.003729
	-1.627843
	-0.36023
	-1.627843
	-0.36023

	X Variable 3
	-0.4429233
	0.306575339
	-1.444745
	0.163286
	-1.080482
	0.194635
	-1.080482
	0.194635

	X Variable 4
	-0.0199932
	0.232559208
	-0.08597
	0.932304
	-0.503627
	0.46364
	-0.503627
	0.46364


We can see that the added parameters do not add much value.  Two of the four parameters are not significant at any reasonable level, and the R2 improves only very slightly.  For these reasons, and for the sake of model parsimony, we will stick with models with a degree lower than 4.  

The Durbin Watson statistic

To aid in our model selection, we will list the Durbin Watson statistics for the AR models we are considering:
	
	DWS

	AR(1)
	2.385268

	AR(2)
	2.455149

	AR(3)
	1.996768


Table 1:  Durbin Watson statistical summary
The closer the DW statistic is to 2, the stronger the evidence that there is no serial correlation in the residuals.  Since the AR(3) model is closest to 2, the DW statistic suggests that this model is the best fit.

The Box Pierce Q statistic

Another tool we have in analyzing the appropriateness of our models is the Box Pierce Q statistic.  We will display this statistic at lag 20 for the three autoregressive models.
	
	Box Pierce Q Statistic
	Chi2 Inv

	AR(1)
	20.25309
	30.14353

	AR(2)
	4.269483
	30.14353

	AR(3)
	3.457312
	30.14353


Table 2:  Box Pierce Q statistical summary
When we use the Box Pierce Q statistics, we are testing the null hypothesis that the residuals are white noise.  The chi-squared critical values listed in the Chi2 Inv column are at the 5% significance level.  Based on our findings, we accept the null hypothesis in all three models.  We can conclude that the residuals are white noise in all our models.  Like the DW statistic, the Box Pierce Q statistic suggests that the AR(3) model is the best fit since it has the lowest Bow Pierce Q value.
Modeled vs. Actual

Based on our results in the model diagnostics section, AR(3) seems to be the best fit for our data.  Using this model, we will plot our fitted values against the actual values in our first-differenced exam pass rate time series.
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Figure 5:  The modeled AR(3) model for first-differences vs. the actual first-differenced time series

While not perfect, the modeled AR(3) process follows the general oscillating pattern of the actual time series.  It is nearly spot on for some periods, with some minor deviations in others.  This is probably the best we can do with the limited sample size. Based on this result, the model is appropriate overall.  
By starting with the first three known values of time series data, and accumulating the predicted first differences from there, we can model a ARI(3,1) process to the actual time series.  
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Figure 5:  The modeled ARI(3,1) model vs. the actual time series

We can see from the graph above that while the ARI(3,1) is not awful, it probably does not ideally model the pass rate time series.  This could probably be corrected by introducing a moving average component, which, as stated in the model specification section, makes sense from a practical standpoint.  However, with the statistical modeling capability available to us through our software, this is the best we can do.
Conclusion

The SOA exam pass rate for our company data is certainly volatile from period to period.  The relatively small number of exam-takers per exam period (an average of XX per sitting) contributes to this volatility.  Had we used data for the entire SOA exam-taking pool, we would see much more stable results.  However, the results in our analysis show that nearly 60% of the volatility can be explained by autoregressive components.  The rest can be chalked up to moving average components that we were unable to model, or white noise components that have a high standard error due to the small sample size available to us.  While there is certainly room for improvement in our model as more data becomes available or if more powerful statistical software is used, the model selected does a decent job in predicting the pass rate.  
