Time Series Project

Introduction

I analyzed the popularity of the name, Jill, and a variation, Jillian, among female births in the United States over time.  Data was gathered from the Social Security Administration (SSA) website (ssa.gov/cgi-bin/popularnames.cgi).  The (SSA) provides data on the top 1,000 most popular male and female names in each birth year from 1880 to 2009.  Jill was among the top 1,000 names from 1929 to 2000, and Jillian has been in the top 1000 since 1976.  Therefore, the time period of my analysis includes 1929 to 2009, or 81 years of data.
Data

The following graph summarizes the popularity of Jill (purple) and Jillian (green) over time.  I’m defining “popularity” as the percentage of female births for the year in the U.S.
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Analysis
The sample autocorrelation is an estimate of the actual autocorrelation, which indicates how much correlation exists between data points at different intervals.   I calculated the sample autocorrelation function for both names; the result is illustrated in the graph below.  The time series associated with each name looks to be nonstationary since [image: image3.png]


 hat does not fall off quickly as the lag, k, increases.  (Note: Jillian has only 34 data points available while Jill has 72, so autocorrelations for Jillian are zero much sooner than for Jill.)
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Since neither original series is stationary, I took the first differences between data points for both names.  I then repeated the process of calculating the sample autocorrelations for the first differenced data.  As seen in the following graph, first differences for Jill still do not approach zero very quickly.  However, first differences for Jillian do appear to be potentially stationary.
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In order to test the hypothesis that the first differences of the popularity of Jillian can be considered a stationary series, I performed the Bartlett test.  This test supposes that if a process is white noise, the sample autocorrelation coefficients will be normally distributed with mean zero and standard deviation of the inverse of the square root of the number of data points.  For the first differenced Jillian data, the values of the correlation coefficients range from -0.301 to 0.198.  With 33 data points, the standard deviation according to the Bartlett test is 0.174.  So, all coefficients are within two standard deviations of the mean, which is assumed to be zero (and the actual mean is close to zero).  This supports the hypothesis that the first differenced series for Jillian is stationary.
Additionally, I evaluated the Box-Pierce Q statistic for the first differenced series of each name.  At varying values of K (degrees of freedom and the number of squared autocorrelation coefficient values that are summed), the Q statistics for Jill are high (well above any critical level), implying that the true autocorrelations are not all zero.  (This was, of course, the assumption originally derived from the autocorrelation graph.)  For Jillian, Q statistic values are smaller.  For example, with K=15, Q for first differences of Jillian popularity is 8.4166.  Critical values of the chi-squared distribution with 15 degrees of freedom are 8.55 at 10% and 22.31 at 90%.  Because the Q-statistic is smaller than the critical level, it can be accepted that the autocorrelations (for lags up to 15 years) are generated by white noise.  This is also true for lags greater than 15 years.
So, I concluded that although the popularity of Jillian is non-stationary, the first differences are stationary, making Jillian a first-order homogeneous non-stationary series.

As for the popularity of Jill, I went on to take second differences and calculate the sample autocorrelation function of those.  As seen below, the second differences are closer to zero and approach zero more quickly than either the original series or the first differences.  However, the graphical representation still left me in doubt that the second differences were generated by a white noise process.  After looking at both Bartlett’s test and the Box-Pierce Q statistic, these confirmed that I was not able to conclude that the autocorrelations of the second differences of Jill are zero.
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Even third differences for the popularity of Jill do not produce a series with characteristics of stationarity.  Without being stationary, fitting a model would be difficult and/or meaningless. So, I will proceed with fitting a model to Jillian instead of Jill.
Modeling
I attempted to fit an autoregressive model to first differenced series for Jillian, varying the order of the model until the best fit could be found.  The regression functionality in Excel was used for this analysis.
I used the R^2 value of each model as the first indicator of the goodness of the model fit (how much of the variation is explained by the model).  R^2 values were very poor (around 0.05) for the low-order autoregressive models.  I continued to increase the order of the model and watch the impact on R^2, which experienced significant improvement in the ARI(6,1,0) model.  Still, I continued increasing the order of models to 7 and above, expecting the R^2 value to reach a peak at some point.  However, the R^2 continued to increase, with significant improvement at both ARI(11,1,0) and ARI(12,1,0) models.  I tested models through order 15, which is the maximum number of explanatory variables that Excel’s regression analysis is capable of calculating.  Ultimately, the ARI(15,1,0) had the best R^2 value of any of the models.
The best model is not necessarily given by the model with the highest R^2 value.  The next metric I evaluated for each model was the Durbin-Watson statistic, a test for serial correlation present in the model.  A value close to 2.00 is an indicator that no first-order serial correlation exists, meaning that error terms from different time periods are not correlated.  Models with serial correlation are less efficient and may lead to false conclusions about the preciseness of the parameter estimates.  So, I examined the potential models for a Durbin-Watson statistic as close to 2 as possible.

My first potential model (based on R^2 results) was ARI(6,1,0), but I concluded that it was not the best model based on its D-W statistic of 1.3552.  The next potential models were ARI(11,1,0) and ARI(12,1,0).  These had D-W statistics of 1.6412 and 2.3222, indicating a fair amount of positive serial correlation and negative serial correlation, respectively.  ARI(15,1,0), with the best R^2 result of .8772, had a D-W statistic of 2.2805, which is not the best result.  However, ARI(14,1,0) had a similar R^2 of .8639 but a better D-W result of 2.0655.  Compared to ARI(15,1,0), ARI(14,1,0) is preferable because 1) not much value is lost in terms of R^2, 2) there is far less serial correlation, and 3) it is a slightly simpler model (principle of parsimony).
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ARI(1,1,0) 0.0504 2.1451

ARI(2,1,0) 0.0502 1.9636

ARI(3,1,0) 0.0503 1.9715

ARI(4,1,0) 0.0659 2.0098

ARI(5,1,0) 0.0833 1.8602

ARI(6,1,0) 0.3205 1.3552

ARI(7,1,0) 0.3652 1.7718

ARI(8,1,0) 0.3883 2.0618

ARI(9,1,0) 0.3939 2.0682

ARI(10,1,0) 0.4133 2.0773

ARI(11,1,0) 0.6579 1.6412

ARI(12,1,0) 0.8103 2.3222

ARI(13,1,0) 0.8211 2.0980

ARI(14,1,0) 0.8639 2.0655

ARI(15,1,0) 0.8772 2.2805


I tentatively concluded that ARI(14,1,0) is the most appropriate model for first differences of Jillian, but next examined a graphical representation of the forecasts provided by this model compared to both actual results and forecasts provided by other models.
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The results confirmed that the ARI(14,1,0) model predicted actual results fairly well, along with ARI(15,1,0).  For the reasons mentioned above, I maintained ARI(14,1,0) as my model preference.

The model specifications of the ARI(14,1,0) model are as follows:
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Intercept -0.000014071 0.0000274 -0.5139773 0.6343585

X Variable 1 0.152841844 0.4303410 0.3551645 0.7404026

X Variable 2 -0.041336318 0.4352578 -0.0949697 0.9289062

X Variable 3 -0.053979093 0.3688918 -0.1463277 0.8907410

X Variable 4 0.066610204 0.3087301 0.2157554 0.8397338

X Variable 5 -0.230944072 0.3223550 -0.7164278 0.5133299

X Variable 6 -0.559440011 0.3007705 -1.8600227 0.1363969

X Variable 7 -0.275819021 0.4032941 -0.6839153 0.5315934

X Variable 8 0.069159930 0.3835223 0.1803283 0.8656622

X Variable 9 -0.006446392 0.2156313 -0.0298954 0.9775826

X Variable 10 -0.138666490 0.1794370 -0.7727864 0.4827755

X Variable 11 0.124071624 0.1939111 0.6398377 0.5570869

X Variable 12 -0.201062446 0.1803964 -1.1145588 0.3274873

X Variable 13 -0.041710388 0.2050398 -0.2034258 0.8487319

X Variable 14 -0.177302609 0.2032943 -0.8721473 0.4323514


Therefore, the model I selected for the first differenced time series for the popularity of Jillian would be of the form 
wt = 0.152841844wt-1 - 0.041336318wt-2  - 0.053979093wt-3 + 0.066610204wt-4 - 0.230944072wt-5 - 0.559440011wt-6 - 0.275819021wt-7 + 0.069159930wt-8 - 0.006446392wt-9 - 0.138666490wt-10+ 0.124071624wt-11 - 0.201062446wt-12 - 0.041710388wt-13 - 0.177302609wt-14 - 0.000014071 + et
Conclusion

The historical popularity of the name Jill is difficult to model because it is not stationary, and it is also difficult to forecast since data has not been available for the last decade due to its low popularity.  (It is unknown if the name is showing any trends of increasing popularity that would return it to the top 1,000 names.)  A more complex model is likely necessary to accommodate the extreme rise in popularity in the 1960s and 1970s, or the series needs to be split into multiple time periods for modeling purposes.

It appears possible that Jillian is a popular “replacement” for Jill in the near- to mid-term future.  According to the data on its popularity since the mid 1970s, the series is first-order homogeneous nonstationary and is best modeled with ARI(14,1,0), an autoregressive model of order fourteen. Generally, it is not preferable to introduce unnecessary complexity and select a model with higher order.  In the case of Jillian popularity, however, the additional complexity of ARI(14,10) adds significant predictive power not available in lower order autoregressive models.
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