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Introduction

Being an avid duck hunter from southern Louisiana, I noticed that one species of duck always had a smaller limit than the other species, the Northern Pintail.  This would indicate this duck had a large decline in population.  The purpose of this project is to fit a time series model to the overall estimated population of this species of duck.  I will attempt to fit a few different models to the data and deduce which will be the best model to choose from.
Data


The data for the project comes from the yearly estimated population size from the year 1955 to 2009.  The Northern Pintail is native to North America with breeding grounds in the plains and wetlands of Canada.  During the winter months this species migrates south to the warmer wetlands of the southern United States.  The data is obtained from the United States Department of Wildlife and Fisheries trend reports.
http://www.fws.gov/migratorybirds/NewReportsPublications/NewReportsPublications/PopulationStatus/Trends/Trend%20Report%202009.pdf

Model

Figure 1: Population Trend
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We can see, from Figure 1 that the population trend of the Northern Pintail decreases from 1955 until the late 1980s.  This is to be expected because the breeding grounds of the Northern Pintail were being destroyed and there were no changes to the daily bag limit of the waterfowl.  Later in the late 1980s early 1990s, the U.S. Department of Wildlife and Fisheries lowered the daily bag limit, which is the amount of pintail that could be legally taken in one day.  This, in association with conservational organizations like Ducks Unlimited assisting in preserving the breeding grounds, stopped the decline of the Northern Pintail and leveled the population growth.  Since this is an annual estimation, this data would not show any seasonality.  The downward trend of the data also indicates that this is not a stationary series.  I would suspect an autoregressive model would be the best choice for this data.  If there are less pintail in a certain year, then there are less pintail to breed for years to come.
Figure 2: Correlation Trend
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As can be seen from Figure 2 as well, this time series does not represent a stationary series.  The correlation reduces to zero, and then falls below zero to a minimum of -.326 before returning to zero.  A stationary autoregressive process would geometrically reduce to zero and a stationary moving average process would quickly reduced to zero and would then oscillate about zero at larger lags.  The decline of the autocorrelation is a decline with a few jagged peaks and valleys, but does not drop quickly to zero, therefore this model suggests both autoregressive and moving average properties once we find a stationary transformation.  Since we can conclude that our data is non-stationary, we can begin our search for stationary models by taking the first difference of the original model.
Figure 3: First Difference
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The graph of first differences has a more jagged effect than the original time series.  The first differences also appear to be oscillating about one mean, rather than having the mean change over time.  We will next examine the correlogram in order to determine the stationarity of this time series.

Figure 4: Correlogram of First Differences
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From Figure 4, we can see that the autocorrelation of the first differences start off closer to zero.  After oscillations between .2 and -.2 at lag 18, the correlation gradually lessens to zero (except for a spike at lag28) as the lags become greater, suggesting a stationary autoregressive and moving average process.  I will now attempt to fit different models to data of the first differences.
Model Parameters


In this section, I will estimate autoregressive, moving average and mixed models of different orders and determine which autoregressive model is of best fit.  Keep in mind I will be using the data from the first differences, so these models will be of ARIMA(p,d,q) form.  I will estimate the ARI(p,d) models using excel’s regression tool pack. I will fit an ARI(1,1), ARI(2,1), ARI(3,1), ARI(4,1),and an ARI(5,1) model to the data provided.
ARI(1,1):  Using excel’s regression tool pack this model has the formula:

Yt = -.17983 - .33277Yt-1 + εt
With regression statistics:

	Regression Statistics

	 Multiple R
	0.332703

	R Square
	0.110691

	Adjusted R Square
	0.093254

	Standard Error
	0.993936

	Observations
	53


	 
	Coefficients
	Standard Error
	t Stat
	P-value

	Intercept
	-0.17983
	0.137689
	-1.30608
	0.197385

	X Variable 1
	-0.33277
	0.132076
	-2.51951
	0.014927


ARI(2,1): Using excel’s regression tool pack this model has the formula:

Yt = -.11987 - .31027Yt-1 -.06893Yt-2 + εt 
With regression statistics:

	Regression Statistics

	Multiple R
	0.336021

	R Square
	0.11291

	Adjusted R Square
	0.076703

	Standard Error
	0.884526

	Observations
	52


	 
	Coefficients
	Standard Error
	t Stat
	P-value

	Intercept
	-0.11987
	0.125784
	-0.95302
	0.345259

	X Variable 1
	-0.31027
	0.125002
	-2.4821
	0.016537

	X Variable 2
	-0.06893
	0.124784
	-0.55236
	0.583213


ARI(3,1):  Using excel’s regression tool pack this model has the formula:

Yt = -.09823 - .45119Yt-1 -.07944Yt-2 + .025697Yt-3+ εt 
With regression Statistics: 
	Regression Statistics

	Multiple R
	0.431461

	R Square
	0.186159

	Adjusted R Square
	0.134212

	Standard Error
	0.862464

	Observations
	51


	 
	Coefficients
	Standard Error
	t Stat
	P-value

	Intercept
	-0.09823
	0.12488
	-0.78662
	0.435451

	X Variable 1
	-0.45119
	0.139771
	-3.22806
	0.002274

	X Variable 2
	-0.07944
	0.12946
	-0.61365
	0.542408

	X Variable 3
	0.025697
	0.122056
	0.210537
	0.834159


ARI(4,1):  Using excel’s regression tool pack this model has the formula:
Yt = -.04969 -.49555Yt-1-.14117Yt-2 + .094644Yt-3 +.23024Yt-4 + εt
With the following test statistics

	SUMMARY OUTPUT

	
	

	Regression Statistics

	Multiple R
	0.510342

	R Square
	0.260448

	Adjusted R Square
	0.194711

	Standard Error
	0.840109

	Observations
	50


	 
	Coefficients
	Standard Error
	t Stat
	P-value

	Intercept
	-0.04969
	0.12394
	-0.40093
	0.690371

	X Variable 1
	-0.49555
	0.14236
	-3.48094
	0.001123

	X Variable 2
	-0.14117
	0.150727
	-0.93661
	0.353959

	X Variable 3
	0.094644
	0.126665
	0.747201
	0.458829

	X Variable 4
	0.23024
	0.119985
	1.918897
	0.061353



ARI(5,1):  Using excel’s regression tool pack this model has the formula:

Yt = -.00683 - .57186Yt-1 -.19043Yt-2 +.092027Yt-3 +.31576Yt-4 + .234248Yt-5 + εt
With the following test statistics

	Regression Statistics

	Multiple R
	0.563449

	R Square
	0.317475

	Adjusted R Square
	0.238111

	Standard Error
	0.825531

	Observations
	49


	 
	Coefficients
	Standard Error
	t Stat
	P-value

	Intercept
	-0.00683
	0.123877
	-0.05516
	0.956264

	X Variable 1
	-0.57186
	0.146527
	-3.90278
	0.00033

	X Variable 2
	-0.19043
	0.158092
	-1.20456
	0.23496

	X Variable 3
	0.092027
	0.149558
	0.615326
	0.541583

	X Variable 4
	0.31576
	0.126883
	2.488586
	0.016776

	X Variable 5
	0.234248
	0.123478
	1.897092
	0.064545


ARI(6,1): The test statistics from this model show that the model is become less efficient with a lower R-Square than the ARI(5,1).  We will not need to run any diagnostic checks on this model.
	SUMMARY OUTPUT

	
	

	Regression Statistics

	Multiple R
	0.539738

	R Square
	0.291318

	Adjusted R Square
	0.187608

	Standard Error
	0.839574

	Observations
	48


Model Diagnostics

Comparing the first five autoregressive models the R-squared values are all rather low:
	Model
	R-Square

	ARI(1,1)
	.110691

	ARI(2,1)
	.11291

	ARI(3,1)
	.186159

	ARI(4,1)
	.260448

	ARI(5,1)
	.317475


These low R-Squared values suggest that none of these models are very good fits for the data.  The ARI (5,1) model appears to be the best fit of all, according to the R-Square, because it has the highest R2 value.
The calculated Durban-Watson statistics are as follows.
	Model
	Durban-Watson 

	ARI(1,1)
	2.9027

	ARI(2,1)
	2.0248

	ARI(3,1)
	2.0428 

	ARI(4,1)
	3.3008

	ARI(5,1)
	3.2733


From the Durban-Watson Statistics the only two models that appear to be significant are the ARI(2,1) and the ARI(3,1)  models.  These two statistics are very close to 2 which is strong evidence that there is no serial correlation in the residuals.  This statistic suggests the ARI(2,1) model is the best fit.

The calculated Box Pierce Q-Statistics for the first 30 observations along with the chi-squared statistic with 30 – 1 = 29 degrees of freedom are as follows:
	Model
	Box-Pierce
	Chi-Square Value

	ARI(1,1)
	14.6983
	39.0875

	ARI(2,1)
	13.6973
	39.0875

	ARI(3,1)
	7.7543
	39.0875

	ARI(4,1)
	6.1093
	39.0875

	ARI(5,1)
	4.5765
	39.0875


We can see from the table above that all of the models fail to reject the null hypothesis that the residuals form a white noise process.  All of the Box-Pierce Q statistics are well below the critical chi-squared value at 29 degrees of freedom.  The following table will summarize all of the model statistics.
	
	ARI(1,1)
	ARI(2,1)
	ARI(3,1)
	ARI(4,1)
	ARI(5,1)

	R2
	.110691
	.11291
	.186159
	.260448
	.317475

	Durbin-Watson
	2.9027
	2.0248
	2.0428
	3.3008
	3.2733

	Box-Pierce
	14.6983
	13.6973
	7.7543
	6.1093
	4.5765

	Chi-Square
	39.0875
	39.0875
	39.0875
	39.0875
	39.0875


Comparing the test statistics above we will want to choose the ARI(3,1) process as our model from these five choices. The only two models which show little to no serial correlation are the ARI(2,1) and the ARI(3,1) models, because their Durbin-Watson statistics are close to 2.  Of these two models, the ARI(3,1) model has a lower Box-Pierce Q Statistic and a higher R2.  This indicates that the ARI(3,1) model is a better fit than the ARI(2,1).  
Conclusion

Although we may have found a best fitting model out of these five choices, the model itself is still not a good forecasting model of actual data.  The low R2 values represent that only about 18% of the volatility in the predicted values can be attributed to the model.  More than likely we will need to add some moving average parameters in order to achieve a better fitting model.  The autoregressive parameters alone cannot account for the peaks and valleys in the general decline of the population of the Northern Pintail.  Meaning that death and birth rate of the bird alone cannot fully model the time series.  If we add moving average terms that could represent a year where there was a shortage of food in their migratory wetlands or unusually cold breeding periods, we would be able to better model this population.
