Time Series – Total Residential Electricity Consumption 1973 to 1990

Introduction

Residential electricity consumption is a very good time series data to work on. Apart from the availability of the complete data, the data itself exhibits seasonality, trends and seemingly consistent values (that is, it does not have fluctuations that would distort any time series model that will be fitted onto it).

This time series student project is a demonstration of the basic time series modelling techniques being discussed in the text. Basic seasonal adjustment, detrending and ARIMA modelling shall be performed on the time series data.

Data

The data was taken from the website (http://www.eia.doe.gov/overview_hd.html). The website contains series from 1973 to 2010. But for the purpose of this project, I have truncated the data to include only years 1973 to 1990. The intention is to first check if a simple ARIMA model can be used to fit into the data. It can then be extended to include years 1991 to 2010.
The following chart exhibits the data series.
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The data exhibits an annual seasonal pattern, represented by recurring peaks and downturns in the data. The most distinct peak for the data is at January and decreases from February to May and becomes fairly stable from June to October. Electricity consumption then increases from November and peaks again January of the next year. A reasonable explanation on this is that during the Christmas holidays, residents consume more electricity putting on lights and other decorations in preparation and celebration of the much awaited holidays. 
Autocorrelation Function (“ACF”)

In calculating the autocorrelation function for the time series, I used the macro from the Three-month Treasury bill template as posted in the NEAS website (http://www.neas-seminars.com/discussions/shwmessage.aspx?ForumID=284&MessageID=7783). But before doing so, I modified the macro so that it will calculate T-3 autocorrelations, where T is the total number of data points, up to a maximum of 120 lags only. Apart from that, I assigned a hotkey of Ctrl+Shift+R to select the range of data points and Ctrl+Shift+C to calculate the autocorrelation for the selected data.

The calculated ACF for the unadjusted data series may be found in the worksheet TS_Electricity_Final.xls (“worksheet”) tab “Unadjusted Data”. The annual seasonal pattern for the data is further verified by the autocorrelation as shown in the chart below:
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The autocorrelation function for the data series peaks every 12 lags, which verifies that an annual seasonal component is present in the data. In order to fit a time series model for this data, the data has to be adjusted of its seasonal component. 
Deseasonalization

In order to remove the seasonal component in the data series, I’ll be using the method as discussed in the text. The steps in removing the seasonal component are summarized in the steps below:
1) Calculate y’t, the 12-month centered moving average for each data point
2) Calculate zt, the ratio of the yt and y’t.

3) Calculate zm, which is equal to averaging all zt’s corresponding for each month of the year, i.e., zm = 1/k * (zm + zm+12 + zm+24 + … + zm+12(k-1))

4) Adjust the zm’s such that the sum of the zm will be 12. This will be the seasonal component factor for each month, z*m.

5) Divide yt by the corresponding monthly seasonal component.

The whole process is shown in the worksheet under tab “Deseasonalize”. The figure below compares the raw data and the time series after removing the seasonal component.
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The chart illustrates that the raw data has been significantly smoothed out. It is arguable that the seasonal component has been successfully removed. From hereon, I’ll refer to the seasonally adjusted data as the “deseasonalized time zeries”.
Detrending

Looking at the charts presented, it is hard to notice if there is any upward or downward trend existent in the data. In order to identify any trend present, I used excel’s functionality of fitting an exponential trend. In this manner, I can model the time series data as a deterministic exponential time series model, which can be represented by the equation
yt = Aert

where r is the approximate force of trend. The resulting equation was 1218.004e0.0007436t, suggesting that there is an upward trend of approximately 0.07% per month, or around 0.9% per annum. The chart below shows the deseasonalized data and the exponential trend fitted:
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However, in detrending this data, I’ll be using a discrete annual trend adjustment factor, r, which is taken by taking the average of the differences between ln(yt) and ln(yt-12), and then dividing the deseasonalized data series by expr(data year – 1973), since 1973 is the initial data year.
The whole process is presented in the worksheet under tab “Detrending”, with the annual exponential trend value equal to 0.86%. The chart below compares the before and after detrending of the data series. 
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We can see clearly that after applying the trend factor adjustment, the data series exhibits no upward trend any longer. Using the excel functionality for trends, the resulting trend line equation is 1190.018e0.00000t, supporting the observation that there is no trend existent in the data series. 

This detrended, deseasonalized data series will be used for ARIMA modeling. I’ll refer to this series as the adjusted data and denote it as y’t. Therefore, the full model for the time series is given by the following equation:

yt = y’t x expr(data year – 1973) x  z*m + t
The next step is to create an ARIMA model for y’t.

ARIMA Modeling
Autocorrelation Function

In model specification, the first step is to examine the autocorrelation function of the time series and check if the time series is stationary. The chart below shows the autocorrelation function for the adjusted time series:
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The graph above shows that after the first autocorrelation, the autocorrelations for higher lags quickly declines to zero. It then increases and peaks again at lags k = 12 and 13, and then decreases again, which repeats the same cycle for the next 12 lags. For higher lags, I can assume that those are clearly just white noise. Based on this observation, I can conclude that the time series is indeed stationary. There are no visible peaks in the autocorrelation function apart from the ones mentioned, also suggesting that there is no moving average component.

Model Specification and Diagnostic Checking
Having peaks at lags k = 1 and lags k = 12 and 13 suggests that an autoregressive (“AR”) model with 1,2 or 3 parameters are good candidates for the model. Using the excel functionality INDEX and LINEST, I fitted a regression model on the data series. Below are the resulting equations for each model:
AR(1) = yt = 513.661 + 0.582yt-1 + t
AR(2) = yt = 313.652 + 0.543yt-1 +0.202 yt-12 + t
AR(3) = yt = 313.652 + 0.527yt-1 +0.160 yt-12 + 0.079 yt-13 + t
I examined the first 60 autocorrelations of the fitted models and is illustrated by the chart below:
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The same chart (and the calculation results) maybe found under the tab “Model Comparison 1”, where I compared the resulting ACF of each model against the autocorrelation of the adjusted time series data. It is clearly shown here that AR(1)’s ACF matches closely to the adjusted time series’ ACF. However the other 2 model’s ACF, even though have higher resulting autocorrelations compared to the adjusted data, closely resemble the ACF pattern, and thus, should still be reconsidered as possible models.
In the worksheet under tab “Model specification 2”, I examined the residual autocorrelation function and used the Box-Pierce Q-statistic test. It is stated under the text that if the model is correctly specified, then for large displacements, the residual autocorrelation rk are themselves uncorrelated, normally distributed random variables with mean 0 and variance 1/T
. Also, according to the text, for low order models, Q-statistics for lags k = 15 or 20 should suffice as a test.
The graph below shows the residual autocorrelation functions and the Q-statistics for each model.
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One notable observation in the residual autocorrelation is that for the model AR(1) is the distinct peak at lag k=12, which translates to a jump in the Q-statistic at the said lag. The autocorrelations for AR(2) and AR(3) resemble more of a with noise process without any distinct peaks and consistent Q-statistic for each lag.
The following table summarizes the results for all the models and tests:
	Model
	AR(1)
	AR(2)
	AR(3)

	Sum of coefficients
	0.582
	0.745
	0.766

	Durbin Watson
	1.801
	1.812
	1.765

	Q-Statistic
	
	
	

	
K = 15
	26.329
	14.448
	14.914

	
K = 20
	27.513
	16.305
	16.797

	Chi-square 10%
	
	
	

	
K = 15
	21.064
	19.812
	18.549

	
K = 20
	27.204
	25.989
	24.769

	Chi-square 5%
	
	
	

	
K = 15
	23.685
	22.362
	21.026

	
K = 20
	30.144
	28.869
	27.587


The table shows that the sum of coefficients for all models is acceptable (i.e., less than 1). The Durbin Watson statistic are all less than 2.0, suggesting a potential positive serial correlation. However, based on the DW significance table at 5% significance with 200 observations, the du for models with 1, 2 and 3 explanatory variables are 1.779, 1.789 and 1.799, respectively. This would put some doubt on the validity of the 3rd model.
Based on the Box-Pierce Q-statistic, AR(1) have a Q-stat that exceeds the chi-square value at the 10% level but not at the 5% level, unlike the latter 2 models with which both Q-statistics are below the value at 10%. Therefore, there is more doubt being placed on the AR(1) model based on this test.
As not fully satisfying the diagnostic tests, models AR(1) and AR(3) can be set aside for the meantime. The preferred model for the adjusted data is the AR(2) model, which satisfies both the DW test and the Box-Pierce test.

In order to fully establish its credibility as a model, a 3rd test has been performed on the AR(2) model, which tests the individual residual correlations and checks if the values are within 2 to 3 standard deviations from zero, using the calculated variance of 1/T. The tab “AR(2) Model” shows that the no rk goes over 2 standard deviations, passing the last diagnostic check.

The charts below compares the adjusted data and the AR(2) model results, the first against the adjusted data and the second one against the unadjusted data. Both charts illustrate a really good fit.
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Forecasting
An ex-post forecast shall be performed using the actual data from 1991 to 1995. The chart below compares the actual and the fitted data.
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It can be seen in the graph that the model reasonably fits with the actual values except for a few – most noticeable on months of July and August starting 1993, where the electricity consumption increased compared to the prior years.
Conclusion
The time series model presented in this project provides a good fit for the data series being modeled, passing the statistical test and exhibiting a good fit graphically.
The model can however be extended towards by using more recent data. As mentioned, the model has been truncated in order to test the feasibility of fitting a simple time series model. In extending the model, new parameters for the seasonality adjustment and trend will emerge. As shown in forecasting, the model does not fully hold especially on the months of July and August of 1993 to 1995, which states that the annual trend may no longer hold or that the data series is no longer stationary. If this would be the case then AR(2) model may no longer hold valid and would necessitate a specification of a new model.
� Pindyck R., Rubinfeld D., Econometric Models and Economic Forecasts, 4th Edition, p. 555





