TS module 12 AR(2) process and method of moments (practice problem)

(The attached PDF file has better formatting.)

*Exercise 12.1: AR(2) process and method of moments

The first two sample autocorrelations of an AR(2) process are $r_1 = 0.5$ and $r_2 = 0.4$

A. What is the method of moments (Yule-Walker) estimate for ϕ_1 ?

B. What is the method of moments (Yule-Walker) estimate for ϕ_2 ?

Solution 12.1: See Cryer and Chan, top of page 150, equation 7.1.2:

$$\hat{\phi}_1 = \frac{r_1(1 - r_2)}{1 - r_1^2}$$
$$\hat{\phi}_2 = \frac{r_2 - r_1^2}{1 - r_1^2}$$

Part A: The estimated ϕ_1 is $(0.5 \times (1 - 0.4)) / (1 - 0.5^2) = 0.4$

Part B: The estimated ϕ_2 is $(0.4 - 0.5^2)) / (1 - 0.5^2) = 0.2$

Final exam problems may give ϕ_1 and ϕ_2 to derive ρ_1 and ρ_2 ; they may also give σ_{ϵ}^2 and derive γ_0 , γ_1 , and γ_2 ; they may give r_1 and r_2 and derive ϕ_1 and ϕ_2 ; they may also give Var(Y) (γ_0) and derive σ_{ϵ}^2 . The formulas are the same; compare them as you review the modules.

** Exercise 12.2: AR(2) process and method of moments practice problem

An AR(2) process with 100 observations has the following observed values:

 $r_1 = 0.8$, $r_2 = 0.5$, $\overline{y} = 2$, and variance(Y) = 5.

- A. What is the simple method of moments estimate of ϕ_1 used by Cryer and Chan?
- B. What is the simple method of moments estimate of ϕ_2 used by Cryer and Chan?
- C. What is the estimate of θ_0 ? D. What is the estimate of σ_{ϵ}^2 ?

Solution 12.2: See Cryer and Chan, top of page 150, equation 7.1.2:

$$\hat{\phi}_1 = \frac{r_1(1 - r_2)}{1 - r_1^2}$$
$$\hat{\phi}_2 = \frac{r_2 - r_1^2}{1 - r_1^2}$$

Part A: The estimated ϕ_1 is (0.8 × (1 – 0.5)) / (1 – 0.8²) = 1.111

Part B: The estimated ϕ_2 is $(0.5 - 0.8^2) / (1 - 0.8^2) = -0.389$

Part C: The estimated mean of the time series is 2. The mean = $\theta_0 / (1 - \phi_1 - \phi_2)$, so

 $\theta_0 = \mu \times (1 - \phi_1 - \phi_2) = 2 \times (1 - 1.111 - 0.389) = 0.556.$

Part D: The estimate of σ_s^2 is $(1 - 1.111 \times 0.8 - (-0.389) \times 0.5) \times 5 = 1.529$