TS module $12 \mathrm{AR}(2)$ process and method of moments (practice problem)
(The attached PDF file has better formatting.)
*Exercise 12.1: $\operatorname{AR}(2)$ process and method of moments
The first two sample autocorrelations of an $\operatorname{AR}(2)$ process are $r_{1}=0.5$ and $r_{2}=0.4$
A. What is the method of moments (Yule-Walker) estimate for ϕ_{1} ?
B. What is the method of moments (Yule-W alker) estimate for ϕ_{2} ?

Solution 12.1: See Cryer and Chan, top of page 150, equation 7.1.2:
$\hat{\phi}_{1}=\frac{r_{1}\left(1-r_{2}\right)}{1-r_{1}^{2}}$
$\hat{\phi}_{2}=\frac{r_{2}-r_{1}^{2}}{1-r_{1}^{2}}$

Part A: The estimated ϕ_{1} is $(0.5 \times(1-0.4)) /\left(1-0.5^{2}\right)=0.4$
Part B: The estimated ϕ_{2} is $\left.\left(0.4-0.5^{2}\right)\right) /\left(1-0.5^{2}\right)=0.2$
Final exam problems may give ϕ_{1} and ϕ_{2} to derive ρ_{1} and ρ_{2}; they may also give $\sigma^{2}{ }_{\varepsilon}$ and derive γ_{0}, γ_{1}, and γ_{2}; they may give r_{1} and r_{2} and derive ϕ_{1} and ϕ_{2}; they may also give $\operatorname{Var}(\mathrm{Y})\left(\gamma_{0}\right)$ and derive $\sigma^{2}{ }_{\varepsilon}$. The formulas are the same; compare them as you review the modules.
** Exercise 12.2: $\mathrm{AR}(2)$ process and method of moments practice problem
An $A R(2)$ process with 100 observations has the following observed values:
$r_{1}=0.8, r_{2}=0.5, \bar{y}=2$, and variance $(Y)=5$
A. What is the simple method of moments estimate of ϕ_{1} used by Cryer and Chan?
B. What is the simple method of moments estimate of ϕ_{2} used by Cryer and Chan?
C. What is the estimate of θ_{0} ?
D. What is the estimate of σ^{2} ?

Solution 12.2: See Cryer and Chan, top of page 150, equation 7.1.2:
$\hat{\phi}_{1}=\frac{r_{1}\left(1-r_{2}\right)}{1-r_{1}^{2}}$
$\hat{\phi}_{2}=\frac{r_{2}-r_{1}^{2}}{1-r_{1}^{2}}$

Part A: The estimated ϕ_{1} is $(0.8 \times(1-0.5)) /\left(1-0.8^{2}\right)=1.111$
Part B: The estimated ϕ_{2} is $\left.\left(0.5-0.8^{2}\right)\right) /\left(1-0.8^{2}\right)=-0.389$
Part C: The estimated mean of the time series is 2 . The mean $=\theta_{0} /\left(1-\phi_{1}-\phi_{2}\right)$, so
$\theta_{0}=\mu \times\left(1-\phi_{1}-\phi_{2}\right)=2 \times(1-1.111--0.389)=0.556$.
Part D: The estimate of σ_{ε}^{2} is $(1-1.111 \times 0.8-(-0.389) \times 0.5) \times 5=1.529$

