TSS module 9 Identifying ARIMA processes practice problems

Cryer and Chan show how to write an ARIMA(p,1,q) process as a non-stationary ARMA process. Some final exam problems ask you to identify the proper ARIMA process and its parameters.

**Question 1.2: ARIMA Process

A time series is
$$Y_t = 1.4Y_{t-1} + 0.1Y_{t-2} - 0.5Y_{t-3} + e_t + 0.3e_{t-1} + 0.2e_{t-2}$$

What is the process followed by this time series?

- A. ARIMA(1,1,1)
- B. ARIMA(2,1,2)
- C. ARIMA(2,1,1)
- D. ARIMA(1,2,1)
- E. ARIMA(2,2,1)

Answer 1.2: B

Rewrite the ARIMA process as

$$Y_{t} - Y_{t-1} = 0.4Y_{t-1} + 0.1Y_{t-2} - 0.5Y_{t-3} + e_{t} + 0.3e_{t-1} + 0.2e_{t-2}$$

$$= 0.4Y_{t-1} - 0.4Y_{t-2} + 0.4Y_{t-2} + 0.1Y_{t-2} - 0.5Y_{t-3} + e_{t} + 0.3e_{t-1} + 0.2e_{t-2}$$

$$= 0.4Y_{t-1} - 0.4Y_{t-2} + 0.5Y_{t-2} - 0.5Y_{t-3} + e_{t} + 0.3e_{t-1} + 0.2e_{t-2}$$

$$\Rightarrow W_{t} = 0.4W_{t-1} + 0.5W_{t-2} + e_{t} + 0.3e_{t-1} + 0.2e_{t-2}$$

See equation 5.2.2 on page 92.

Intuition: The ARIMA(p,1,q) process is

$$Y_{t} - Y_{t-1} = \phi_1 (Y_{t-1} - Y_{t-2}) + \phi_2 (Y_{t-2} - Y_{t-3}) + \dots + \phi_p (Y_{t-p} - Y_{t-p-1}) + \epsilon_t - \theta_1 \epsilon_{t-1} - \theta_2 \epsilon_{t-2} - \dots - \theta_q \epsilon_{t-q}$$

Rewrite this as

$$Y_{t} = (1 + \phi_{1}) Y_{t-1} + (\phi_{2} - \phi_{1}) Y_{t-2} + (\phi_{3} - \phi_{2}) Y_{t-3} + ... + (\phi_{p} - \phi_{p-1}) Y_{t-p} + \epsilon_{t} - \theta_{1} \epsilon_{t-1} - \theta_{2} \epsilon_{t-2} - ... - \theta_{q} \epsilon_{t-q}$$

The AR(1) process for $\nabla Y_t = W_t$ has $\phi_1 = 0.4$ and $\phi_2 = 0.5$, which give

- $1 + \phi_1 = 1.4$
- $-\phi_2 = -0.5$

These are the coefficients of Y_{t-k} in the original equation.

Jacob: What about the moving average terms?

Jacob: The coefficients of the error terms ϵ_{t-k} remain unchanged; they are the negatives of the moving average parameters.

Jacob: What is the procedure for this transformation?

Rachel: The sum of the coefficients for the Y terms are equal on both sides of the equation.