TS Module 7 Stationary mixed processes
(The attached PDF file has better formatting.)

Time series ARMA processes practice problems

*Question 7.1: ARMA(1,1)
An ARMA $(1,1)$ process has $\rho_{1}=0$. Which of the following is true?
A. $\phi_{1}=\theta_{1}$ or $\phi_{1} \times \theta_{1}=1$
B. $\phi_{1}=\theta_{1}$ and $\phi_{1} \times \theta_{1}=1$
C. $\phi_{1}=-\theta_{1}$ or $\phi_{1} \times \theta_{1}=-1$
D. $\phi_{1}=-\theta_{1}$ and $\phi_{1} \times \theta_{1}=-1$
E. $\phi_{1}=\theta_{1}$ and $\phi_{1} \times \theta_{1}=-1$

Answer 7.1: A
For an ARMA(1,1) process:

$$
\rho_{k}=\frac{(1-\theta \phi)(\phi-\theta)}{1-2 \theta \phi+\theta^{2}} \phi^{k-1}
$$

$$
\text { for } k \geq 1
$$

Intuition: If the residual in period t increases one unit:

- Moving average: θ_{1} causes the forecast to decrease θ_{1} units
- Autoregressive: ϕ_{1} causes the forecast to increase ϕ_{1} units

If $\phi_{1}=\theta_{1}$, these two effects offset each other. A change in the period t value does not affect the period $t+1$ value, so $\rho_{1}=0$.
θ_{1} and $1 / \theta_{1}$ produce the same autocorrelation function.
$\phi_{1}=\theta_{1}$ has the same effect as $\phi_{1}=1 / \theta_{1}$ or $\phi_{1} \times \theta_{1}=1$.
*Question 7.2: Exponential decay
For which of the following processes do the autocorrelations have exponential decay?
A. White noise
B. $\mathrm{MA}(1)$
C. $\mathrm{MA}(2)$
D. $\operatorname{ARMA}(1,1)$
E. ARIMA $(0,1,1)$

Answer 7.2: D
See Cryer and Chan page 78: The $\operatorname{ARMA}(1,1)$ autocorrelation function decays exponentially as the lag k increases. The damping factor is ϕ, but the decay starts from initial value ρ_{1}, which also depends on θ. This is in contrast to $\operatorname{AR}(1)$ autocorrelation, which also decays with damping factor ϕ but always from initial value $\rho_{o}=1$.
*Question 7.3: Exponential decay
The autocorrelation function of an $\operatorname{ARMA}(1,1)$ process has exponential decay with a damping factor of 0.4 . Which of the following is true?
A. $\phi_{1}-\theta_{1}=0.4$
B. $\phi_{1} \times \theta_{1}=0.4$
C. $\phi_{1} \times \theta_{1}=2.5$
D. $\phi_{1}=0.4$
E. $\theta_{1}=-0.4$

Answer 7.3: D
*Question 7.4: Moving average and autoregressive processes
The moving average process $Y_{t}=e_{t}+0.5 e_{t-1}+0.5^{2} e_{t-2}+0.5^{3} e_{t-3}+\ldots$ is equivalent to what autoregressive process?
A. $Y_{t}=e_{t}+0.5 Y_{t-1}+0.5^{2} Y_{t-2}+0.5^{3} Y_{t-3}+\ldots$
B. $Y_{t}=e_{t}+0.5 Y_{t-1}+0.5 Y_{t-2}+0.5 Y_{t-3}+\ldots$
C. $Y_{t}=e_{t}+0.5 Y_{t-1}$
D. $Y_{t}=e_{t}-0.5 Y_{t-1}-0.5^{2} Y_{t-2}-0.5^{3} Y_{t-3}+\ldots$
E. $Y_{t}=e_{t}-0.5 Y_{t-1}+0.5^{2} Y_{t-2}-0.5^{3} Y_{t-3}+\ldots$

Answer 7.4: C

$$
\begin{aligned}
Y_{t} & =e_{t}+0.5 Y_{t-1} \\
& =e_{t}+0.5\left(e_{t-1}+0.5 Y_{t-2}\right)
\end{aligned}
$$

Continue expanding to eliminate Y_{t} and remain with an infinite series of ϵ 's.
See Cryer and Chan page 70, equation 4.3.8

