TS Module 7ψ weights (filter representation) practice problems

(The attached PDF file has better formatting.)

Cryer and Chan use the term ψ weights; other statisticians use the term *filter representation*. The term filter representation in any practice problems means ψ weights.

We use ϕ parameters for autoregressive models and θ parameters for moving average models.

- The ϕ parameters relate future time series values to past time series values.
- The θ parameters relate future time series values to past residuals.

Moving average parameters have a finite memory, and autoregressive parameters have an infinite memory.

- ! For an MA(1) process, a random fluctuation in period T affects the time series value in period T+1 only.
- ! For an AR(1) process, a random fluctuation in period T affects the time series value in all future periods.

We can convert a ϕ parameter to an infinite series of θ parameters.

Illustration: A ϕ_1 = 0.500 is equivalent to an infinite series of θ parameters

$$
\theta_1 = -0.500
$$
, $\theta_2 = -0.250$, $\theta_3 = -0.125$, ... where $\theta_j = -(0.500^j)$.

One might wonder: *Why convert a single parameter to an infinite series?*

 $Answer:$ Each θ parameter affects one future value. To estimate variances of forecasts, we convert autoregressive parameters into sets of moving average parameters. We call the new model a filter representation and represent the new parameters by ψ weights.

Take heed: The ψ parameters have the opposite sign of the θ parameters: θ = 0.450 is ψ = –0.450. The model is the same, but the signs of the coefficients are reversed.

 $y_t = \delta + \varepsilon_t - \theta_1 \varepsilon_{t-1}$ is the same as $y_t = \delta + \varepsilon_t + \psi_1 \varepsilon_{t-1}$

The general form of a filter representation is $y_t - \mu = \psi_0 \epsilon_t + \psi_1 \epsilon_{t-1} + \psi_2 \epsilon_{t-2} + ...$

- For a moving average model, $\mu = \theta_0$.
	- o Cryer and Chan often use time series with a mean of zero.
	- \circ For the values of other time series, add the mean.

See Cryer and Chan, chapter 4, page 55, equation 4.1.1.

Both moving average and autoregressive processes have filter representations.

- **If the time series has only moving average parameters,** $\psi_j = -\theta_j$ **.**
- \bullet If the time series has autoregressive parameters, each $\phi_\textnormal{j}$ is a series of $\psi_\textnormal{j}$'s.

The exercise below emphasizes the intuition. Once you master the intuition, the formulas are easy.

We examine the filter representation for autoregressive models and mixed models.

** Exercise 7.1 : AR(1) ψ weights (filter representation)

An AR(1) model with ϕ_1 = 0.6 is converted to a filter representation

$$
y_{t} - \mu = \psi_{0} \epsilon_{t} + \psi_{1} \epsilon_{t-1} + \psi_{2} \epsilon_{t-2} + \dots
$$

A. $\,$ What is ψ_{0} ? B. What is ψ_1 ?

C. What is ψ_2 ?

D. What is $\psi_{\rm j}$?

Part A: ψ₀ is one for all ARIMA models. See Cryer and Chan, chapter 4, page 55.

Part B: If the *current error term* increases by 1 unit, the *current value* increases by one unit. The one period ahead forecast changes by 1 × φ_1 = 1 × 0.6 = 0.6, so ψ_1 = φ_1 .

Part C: If the one period ahead forecast changes by 1 × ϕ_1 = 1 × 0.6 = 0.6, the two periods ahead forecast changes by 0.6 \times $\phi_1 = 0.6^2$, so $\psi_2 = \phi_1^2$.

Part D: The same reasoning shows that ψ_j = $(\varphi_1)^j$.

** Exercise 7.2: ARMA(1,1) ψ weights (filter representation)

An ARMA(1,1) model with $\varphi_1 = 0.6$, $\theta_1 = 0.4$ is converted to a filter representation $y_t - \mu = \psi_0 \epsilon_t + \psi_1 \epsilon_{t-1} + \psi_2$ ϵ_{t-2} + ...

Cryer and Chan drop the subscripts from parameters of AR(1), MA(1), and ARMA(1,1) processes, calling them ϕ and θ instead of ϕ_1 and θ_1 .

A. What is ψ_0 ?

- B. What is ψ_1 ?
- C. What is ψ_2 ?
- D. What is ψ_i ?

Part A: ψ_0 is one for all ARIMA models.

Part B: Suppose the current error term increases by 1 unit.

- The moving average part of the ARMA process changes the forecast by $1 \times -\theta_1 = 1 \times -0.4 = -0.4$.
- If the current error term increases by one unit, the current value increases by one unit.
- The autoregressive part of the ARMA process changes the forecast by $1 \times \varphi_1 = 1 \times 0.6 = 0.6$.

The combined change in the forecast is $-0.4 + 0.6 = 0.2$. The change in the one period ahead forecast is φ_1 $-\theta_{1}$.

Take heed: The negative sign reflects the convention that moving average parameters are the negative of the moving average coefficients.

Part C: The one period ahead forecast increases 0.2 units (the result in Part B), so the two periods ahead forecast increases $0.2 \times \varphi_1 = 0.2 \times 0.6 = 0.12$ units.

Part D: Repeating the reasoning above gives $\psi_i = 0.6^{i-1} \times 0.2$.

** Exercise 7.3: ARMA(2,1) ψ weights (filter representation)

An ARMA(2,1) model with $\varphi_1 = 0.6$, $\varphi_2 = -0.3$, $\theta_1 = 0.4$ is converted to a filter representation $y_1 - \mu = \psi_0 \epsilon_1 + \epsilon_2$ $\psi_1 \varepsilon_{t-1} + \psi_2 \varepsilon_{t-2} + ...$

- A. What is ψ_0 ?
- B. What is ψ_1 ?
- C. What is ψ_2 ?
- D. What is ψ_3 ?

Part A: ψ_0 is one for all ARIMA models.

Part B: Suppose the current error term increases by 1 unit.

- The moving average part of the ARMA process changes the forecast by 1 \times -0₁ = 1 \times -0.4 = -0.4. \bullet
- If the current error term increases by one unit, the current value increases by one unit.
- The autoregressive part of the ARMA process changes the forecast by $1 \times \varphi_1 = 1 \times 0.6 = 0.6$.

The combined change in the forecast is -0.4 + 0.6 = 0.2. The change in the one period ahead forecast is φ_1 $-\theta_1$.

Part C: A 1 unit increase in the current error term increases the two periods ahead forecast two ways in this exercise:

- The one period ahead forecast increases 0.2 units (the result in Part A), so the two periods ahead forecast increases $0.2 \times \varphi_1 = 0.2 \times 0.6 = 0.12$ units.
- The current value increases 1 unit, so the φ_2 parameter causes the two periods ahead forecast to increase -0.3 units.

The change in the two periods ahead forecast is $0.12 - 0.3 = -0.18$ units, so $\psi_2 = -0.18$.

Take heed: The θ_1 parameter does not affect forecasts two or more periods ahead: an MA(1) process has a memory of one period. In contrast, an AR(1) process has an infinite memory. The φ_1 parameter affects all future forecasts.

Part D: If the number of periods ahead is greater than the maximum of p and q (2 and 1 in this exercise), the direct effects of the parameters is zero. We compute the combined effects: $\psi_3 = \varphi_1 \times \psi_2 + \varphi_2 \times \psi_1 = 0.6 \times$ $-0.18 - 0.3 \times 0.2 = -0.168$.

** Exercise 7.4: $AR(2)$ process ψ weights (filter representation)

An AR(2) model y_t – μ = ϕ ₁ (y_{t-1} – μ) + ϕ ₂ (y_{t-2} – μ) + ϵ _t has ϕ ₁ = 0.4 and ϕ ₂ = –0.5. We convert this model to an infinite moving average model, or the filter representation

$$
y_t - \mu = \epsilon_t + \psi_1 \epsilon_{t-1} + \psi_2 \epsilon_{t-2} + \dots
$$

A. What is ψ_1 ?

- B. What is ψ_2 ?
- C. What is ψ_3 ?

Part A: Suppose the *residual* in Period *T* increases one unit. W e examine the effect on the *value* in Period $T+1$.

- ! The *current value* increases 1 unit.
- \bullet The $\boldsymbol{\mathfrak{\phi}}_1$ coefficient causes next period's value to increase 0.4 units.

Part B: Suppose the *residual* in Period *T* increases one unit. W e examine the effect on the *value* in Period $T+2$.

- The current value increases 1 unit.
- The φ ₂ coefficient causes the two periods ahead value to increase –0.5 units.
- \bullet The ϕ_1 coefficient has a two step effect. It causes next period's value to increase 0.4 units and the value in the following period to increase $0.4 \times 0.4 = 0.16$ units.

The net change in the two periods ahead value is $-0.5 + 0.16 = -0.34$.

- The AR(2) formula is: $\psi_2 = \varphi_1^2 + \varphi_2 = 0.4^2 0.5 = -0.340$.
- The explanation above is the intuition for this formula.

Part C: We use all permutations: $\varphi_1 \times \varphi_1 \times \varphi_1$, $\varphi_1 \times \varphi_2$, and $\varphi_2 \times \varphi_1 =$

$$
0.4^3 + 2 \times 0.4 \times -0.5 = -0.336
$$

For this part of the exercise, the subscript of ψ is greater than the order of the ARMA process. Instead of working out all the permutations, we multiply each ϕ_j coefficient by the $\psi_{k,j}$ coefficient. We multiply ϕ_1 by ψ_2 and ϕ_2 by ψ_1 = 0.4 × –0.34 + –0.5 × 0.4 = –0.336

Take heed: The formulas are simple permutations.

- ! Focus on the intuition, not on memorizing formulas.
- The final exam problems can all be solved with first principles.