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Introduction

I have been a golfer for most of my life.  I first became a “scratch handicap” at the age of 15, and held a course record at a nearby golf course for several years.  Shooting in the 60s was not uncommon for me and during my days as a junior golfer, I developed an impressive golfing resume that lead to several scholarship offers at NCAA division 1 schools.  Instead of pursuing a career in golf, I decided to study actuarial science and statistics.  Now, after years of focusing on schooling a lot more than my golf swing, I find myself shooting in the low-to-mid 70s on average, and I would like to change this.

I took inspiration from another student’s paper that I saw on the NEAS website that discussed using statistics to predict a professional golfer’s scoring average.  As a golfer and a mathee, I had some issues with the analysis.  Specifically, not all PGA Tour players participate in the same tournaments, and as such, a player who only plays on easier courses, will likely have a lower scoring average than a much more skilled player who predominantly plays on harder courses (such as those played in the majors).  Further, I felt that there were some explanatory variables that should be considered in a regression model that this paper did not consider.  Lastly, I felt that the paper could have incorporated more players into it, as I believe it only had data for 30 (or so) players.
Now that the 2010 PGA Tour season is completed, I have fresh data which I can analyze.  PGATour.com has a wonderful supply of data that I am going to utilize for my study.  My report is going to analysis the scoring performance of all 192 exempt players from the 2010 PGA Tour.

Data
As a golfer, I feel that there are four main types of statistics that determine ones performance on the course:

· Off the Tee: driving distance and driving accuracy

· To the Green: greens in regulation

· Wedge Play: inside 100, scrambling, and sand saves

· Putting: putts per round

Intuitively, we would believe that golfers who can drive the ball long and straight would score better than golfers who cannot.  Golfers who find the green in fewer shots are likely to score better than those who do not.  Players who can recover from missed greens, or hazards such as bunkers, should score better than those who cannot.  Those who take fewer putts during a round should also have a lower score than those who take many.

The above data represent my explanatory variables, my xi’s.  My response variable will be “adjusted” scoring average.  This is a calculation that the PGA Tour has developed so that players scoring averages can be compared regardless of which tournaments a player actually participated in.  In other words, a player cannot skew his adjusted scoring average by only playing on courses that are easier than others.

Here are the variables to be used in this regression:

y = adjusted scoring average

x1 = driving distance (in yards)

x2 = driving accuracy (%)

x3 = greens in regulation (%)

x4 = inside 100 (inches)

x5 = scrambling (%)

x6 = sand saves (%)

x7 = putts per round

Correlation
Before we begin our modeling, we will first look at the correlations that exist between the variables.

	
	x1
	x2
	x3
	x4
	x5
	x6
	x7

	x1
	1
	-0.5849
	0.2628
	0.1948
	-0.2329
	-0.1909
	0.2536

	x2
	
	1
	0.3041
	-0.1520
	0.2747
	0.0479
	0.0913

	x3
	
	
	1
	-0.0715
	0.0870
	-0.0930
	0.5658

	x4
	
	
	
	1
	-0.2608
	-0.2285
	0.2058

	x5
	
	
	
	
	1
	0.5827
	-0.5424

	x6
	
	
	
	
	
	1
	-0.5213

	x7
	
	
	
	
	
	
	1


We can see that there are five relationships that exhibit a correlation (positive or negative) of at least 50%.  It is worthwhile to consider whether or not these relationships are intuitive or not.

x1 and x2: It makes sense that as driving distance increases, driving accuracy would decrease.  Hence a strong negative correlation is logical

x3 and x7: Golfers who hit a lot of greens in regulation are more likely to have longer putts on average than those who missed the green and are able to chip on.  It is intuitive that golfers who are constantly attempting longer putts are more likely to require more putts to get the ball in the hole.  As such, we would expect golfers with high greens in regulation to average more putts per round, and hence, a positive correlation.
x5 and x6: Sand saves would be included in the scrambling calculation, as scrambling calculates the probability of a player getting “up and down” after missing the green.  Sand saves are a specific case of the more general scrambling category.  A positive correlation should exist.
x5 and x7: As a sand save (or scrambling) requires a player to hit the ball from beside the green and use no more than one putt to get the ball in the hole, there is a natural relationship between sand saves (scrambling) and a reduced number of putts.  As such, we would expect a negative correlation between sand saves (scrambling) and putts per round.

x6 and x7: Same as above.

We will keep these correlations in mind as we develop a model.

Modeling
We will begin our modeling, with the ever-so-complex “use everything” model!  That is, we will look at a model that uses all seven potential explanatory variables to estimate scoring average.

Residuals:

     Min       1Q   Median       3Q      Max 

-0.77202 -0.18805  0.01422  0.19078  0.68651 

Coefficients:

             Estimate Std. Error t value Pr(>|t|)    

(Intercept) 68.203097   2.282782  29.877  < 2e-16 ***

x1          -0.028422   0.003979  -7.142 2.07e-11 ***

x2          -0.022168   0.006435  -3.445 0.000708 ***

x3          -0.158135   0.013763 -11.490  < 2e-16 ***

x4           0.001918   0.001085   1.769 0.078617 .  

x5          -0.046100   0.009277  -4.969 1.53e-06 ***

x6          -0.007126   0.004493  -1.586 0.114426    

x7           0.871775   0.073055  11.933  < 2e-16 ***

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 0.2931 on 184 degrees of freedom

Multiple R-squared: 0.8205,     Adjusted R-squared: 0.8137 

F-statistic: 120.1 on 7 and 184 DF,  p-value: < 2.2e-16
Our adjusted R2 value is 0.8137.  Further, our residuals indicate that this model is capable of estimating every golfer’s average score within one stroke.  This is very impressive in my opinion; however, the model is too complicated and there are likely multicollinearity issues present.  We will begin simplifying the model by removing the two variables that are not significant at the 5% level, x4 (inside 100) and x6 (sand saves).
Residuals:

    Min      1Q  Median      3Q     Max 

-0.7973 -0.2044  0.0082  0.1715  0.7175 

Coefficients:

             Estimate Std. Error t value Pr(>|t|)    

(Intercept) 66.855921   2.204589  30.326  < 2e-16 ***

x1          -0.026501   0.003942  -6.723 2.12e-10 ***

x2          -0.020294   0.006438  -3.152  0.00189 ** 

x3          -0.165716   0.013534 -12.244  < 2e-16 ***

x5          -0.051149   0.008877  -5.762 3.39e-08 ***

x7           0.923344   0.070542  13.089  < 2e-16 ***

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 0.2963 on 186 degrees of freedom

Multiple R-squared: 0.8147,     Adjusted R-squared: 0.8097 

F-statistic: 163.5 on 5 and 186 DF,  p-value: < 2.2e-16

Our adjusted R2 value is now 0.8097.  So the model did not lose much of its predictive ability by removing these two variables.  Our maximum and minimum residuals also did not change much, which is a good indicator of the models performance.  All variables are now significant at a 1% level.  As such, I am comfortable with their significance, and would now like to review correlations in the model.

We know that there is a high correlation between x1 (driving distance) and x2 (driving accuracy).  There is no point in keeping both variables in the model if we don’t need to.  We will now see how our model looks after removing x1.

Residuals:

     Min       1Q   Median       3Q      Max 

-0.83258 -0.20102  0.01945  0.19926  0.72290 

Coefficients:

             Estimate Std. Error t value Pr(>|t|)    

(Intercept) 59.746632   2.150883  27.778  < 2e-16 ***

x2           0.009989   0.005115   1.953   0.0523 .  

x3          -0.206024   0.013492 -15.270  < 2e-16 ***

x5          -0.046394   0.009839  -4.715 4.71e-06 ***

x7           0.923057   0.078436  11.768  < 2e-16 ***

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 0.3294 on 187 degrees of freedom

Multiple R-squared: 0.7696,     Adjusted R-squared: 0.7647 

F-statistic: 156.2 on 4 and 187 DF,  p-value: < 2.2e-16

Adjusted R2 dropped to 0.7647, which means we did give up 4.5% of the model’s predictive power by removing driving distance.  However, we now see that x2 (driving accuracy) is no longer significant at a 5% level.  If after removing x2, our adjusted R2 does not drop too much, the reduction from five variables to three may outweigh the reduction in predictive power of the model.  Let’s see what happens we x2 is removed.
Residuals:

     Min       1Q   Median       3Q      Max 

-0.84520 -0.19480  0.02687  0.19557  0.67548 

Coefficients:

             Estimate Std. Error t value Pr(>|t|)    

(Intercept) 59.298607   2.154557  27.522  < 2e-16 ***

x3          -0.203002   0.013503 -15.034  < 2e-16 ***

x5          -0.041172   0.009539  -4.316 2.57e-05 ***

x7           0.942652   0.078372  12.028  < 2e-16 ***

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 0.3319 on 188 degrees of freedom

Multiple R-squared: 0.7649,     Adjusted R-squared: 0.7612 

F-statistic: 203.9 on 3 and 188 DF,  p-value: < 2.2e-16

Our adjusted R2 remained about the same, now at 0.7612.  Further, our spread between minimum and maximum residual is about the same as it was before we removed x1 and x2.  In my opinion, simplifying the model by reducing it to three explanatory variables was worth the reduction in adjusted R2.

Our correlation matrix indicated a high correlation between x7 and both x3 and x5, yet little correlation between x3 and x5.  If we can remove x7 from the model, we should have very few issues stemming from multicollinearity.
Residuals:

     Min       1Q   Median       3Q      Max 

-1.07038 -0.30624  0.02534  0.26152  1.25937 

Coefficients:

             Estimate Std. Error t value Pr(>|t|)    

(Intercept) 83.821114   0.924354  90.681  < 2e-16 ***

x3          -0.084038   0.012195  -6.891 8.02e-11 ***

x5          -0.123819   0.008778 -14.105  < 2e-16 ***

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 0.4403 on 189 degrees of freedom

Multiple R-squared: 0.584,      Adjusted R-squared: 0.5796 

F-statistic: 132.7 on 2 and 189 DF,  p-value: < 2.2e-16

We see a great deterioration of our adjusted R2 value when x7 is removed.  As such, it would be wise to keep x7.

In our model using x3, x5, and x7, we saw that despite being quite significant, x5 was the least significant of the three variables.  It would be worthwhile to look at a model where x5 is removed to see the results.

Residuals:

     Min       1Q   Median       3Q      Max 

-0.86504 -0.19831  0.02675  0.20164  0.77454 

Coefficients:

            Estimate Std. Error t value Pr(>|t|)    

(Intercept) 51.96951    1.38658   37.48   <2e-16 ***

x3          -0.23615    0.01161  -20.34   <2e-16 ***

x7           1.18631    0.05684   20.87   <2e-16 ***

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 0.347 on 189 degrees of freedom

Multiple R-squared: 0.7416,     Adjusted R-squared: 0.7389 

F-statistic: 271.3 on 2 and 189 DF,  p-value: < 2.2e-16

This model shows both x3 and x7 to be very significant.  Further, our adjusted R2 value is still 0.7389 (versus 0.7612 with x5).  Our residuals are still all less than 1.  We have also succeeded in reducing the number of variables in our model from 7 down to 2.
A quick check shows that any further elimination of variables will greatly reduce the accuracy of the regression model, and as such, we cannot eliminate any further values.  Our correlation matrix indicates that there is a strong correlation between x3 and x7 which is something we should be mindful of; however, they are both necessary for this regression model.

Our final model is y = 51.97 – 0.236x3 + 1.186x7.
Conclusions
Our final model suggests that the two most important factors in determining a golfer’s score are greens in regulation and putts per round.  Despite our lists of potential variables being different, this is consistent with the findings of the paper that I took inspiration from.
This knowledge is very useful to people who are trying to improve their golf scores.  Although it is based on data from the PGA Tour, and there are obviously differences between amateur golfers and the best golfers in the world, it still offers insight as to where golfers should be devoting most of their practice time.

The results are logical as well.  Each missed green in regulation reduces x3 by 5.56, and as such, increases a golf score by 1.31 strokes on average, which we would expect, since missing a green is usually a sign of trouble, and requires at least one extra shot to get on the green.  The model also indicates that each extra putt one takes increases ones score by 1.186.  This differs from the intuitive result of 1 extra shot.  However, the value of 1 would fall within a 95% confidence interval for x7.  Also, x7 was highly correlated with three of the initial variables, and moderately correlated with two of the others.  Thus, x7 is likely explaining some other factors as well that putts per round is highly correlated to.  This is likely the cause of the coefficient being greater than 1.
