Time Series Student Project – Annual Salt Prices

Fall 2008
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Introduction:

With the latest major winter storms running through the North American east coast and salt trucks making our roads safe, I wondered how the cost of salt had changed over time.  This project studies the average annual prices from 1949 to 2008, and then models the data using ARIMA techniques to see which model best fits salt’s actual price fluctuations.  
Data used for this modeling was taken from U.S. Geological Survey website which can be found at  http://minerals.usgs.gov/minerals/index.html.   The prices are in USD and all of the prices are adjusted at the 1998 CPI levels in order to compare at constant levels.
Below is a chart of the actual average salt prices during the observed period.  Salt prices show a pretty steady trend over this period especially when one considers the price fluctuations and wide swings of other commodities. 
Figure 1
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Test of Stationarity:

To test for stationarity, we will graph the autocorrelation function.  Sample autocorrelation is the ratio of the sample covariance to the sample variance.  As you can see from the results in Figure 2, the sample autocorrelation declines geometrically and then approaches zero as lag k increases.  The autocorrelation graph also does not have any sharp increases and decreases indicating that there are no moving averages required in the model thus a model with autoregressive terms only is adequate.
Figure 2
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Model Estimation:

Salt prices can therefore be described as an autoregressive model ( AR(p) ) with different orders (p= 1, 2, 3).  This is the same as ARIMA(p,1,0) models.
Yt = δ + [image: image4.png]


  + εt
The variables are defined as
Yt: 
data at time t

δ : 
constant
Φi: 
coefficient for lag I data

εt: 
error term at time t

p  : 
order of the autoregression

Using Excel’s regression add-in, the 3 auto-regressive models produced the following results

AR(1): 

Yt = 2.7679 + 0.9092Yt-1 + εt
AR(2):

Yt = 2.5842 + 0.8687Yt-1 + 0.0463Yt-2 +εt


AR(3):

Yt = 3.6683 + 0.8940Yt-1 + 0.2821Yt-2 - 0.2951Yt-3 + εt  

A table below summarizes the results from the auto-regressions.  We can see from the different order models that all of the sums of coefficients are less than 1.0, which indicates that the models are stationary.  This is consistent with our test above.   From observing the R-Square and Adjusted R-Square statistics, it appears that the auto-regressive model of the third order is the best.
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Coefficients

R-Squared

Adjusted 

R-Squared

AR(1) 0.9092 0.8358 0.8329

AR(2) 0.9150 0.8351 0.8291

AR(3) 0.8810 0.8533 0.8450


Let’s take a look at additional tests to help us make the right model selection.

Serial Correlation:
The Durbin-Watson statistic has been calculated to determine whether error terms show any correlation.  A model with a Durbin-Watson statistic of 2.0 indicates that there is no serial correlation among the residuals.  Clearly, we can see that all 3 models have a Durbin-Watson statistic near 2.0 which is a desired result.  The statistic need only be near 2.0, therefore having AR(1) and AR(3) above and AR(2) below does not matter.
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Statistic

AR(1) 2.0654

AR(2) 1.8918

AR(3) 2.0671


White Noise Testing:
Box-Pierce Q statistic tests whether residuals are white noise or follow certain trends.  The Box-Pierce is calculated as the weighted sum of squares of auto-correlations.  The Box-Pierce Q statistic has a Chi-Square ([image: image8.png]


) distribution with K – p –q degrees of freedom.  We desire models with white noise error terms (e.g. εt’s are white noise).  The null hypothesis that the residuals are a white noise process cannot be rejected at a 10% significance level with 44 degrees of freedom (e.g. significance level at 44 DoF is 56.369).  As you can see from the table below, all of the Q-Statistics are well below the 10% significance level. 
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Q-Statistic

AR(1) 31.2614

AR(2) 27.8767

AR(3) 25.3587


Model Selection and Forecasting:

Although the R-Square and Adjusted R-Square statistics are slightly higher for the AR(3) model than the AR(1) model, since the Box-Pierce and Durbin-Watson statistics are very similar for all models and the R-Square and Adjusted R-Square for AR(1) model are not significantly inferior, I would select the AR(1) model.  
AR(1): 
Yt = 2.7679 + 0.9092Yt-1 + εt
This selection is made due to the principles of parsimony which prefers models that use fewer parameters if the additional parameters do not significantly improve the model.   The graph below shows how well the salt prices can be modeled using an AR(1) model.
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Conclusions:

As you can see from the above graph, the model seems to do a very good job in forecasting future salt prices.  After analyzing test statistics from the 3 difference models, using judgment and following the principles of parsimony, the auto-regressive model with order 1 was selected.  Since salt prices are relatively stable through time, the simple auto-regressive models without moving averages or seasonality could be used with success.  Looks like the price of de-icing the roads will not be increasing drastically any time soon – good news for many cities!
