The first differences are an AR(1) model: $\Delta y_{t}=5+\varphi_{1} \Delta y_{t-1}+\varepsilon_{\mathrm{t}}$.

- Step 1: Determine the most recent value of the autoregressive model from the most recent two values of the original time series: $\Delta y_{40}=y_{40}-y_{39}=60-50=10$
- Step 2: Convert forecasts of the time series to forecasts of the first differences for the one period ahead forecast. The forecast for period 41 is 60 , so the forecasted first difference is $60-60=0$.
- Step 3: Find the parameter ϕ_{1} from the 1 period ahead forecast. $\Delta y_{41}=5+\varphi_{1} \times 10=$ $0 \Rightarrow \varphi_{1}=-0.5 . \theta_{0}=5$ is not the mean of the $\operatorname{AR}(1)$ process; it is the constant term. The $A R(1)$ process can be written two ways: $Y_{t}=\theta_{0}+\phi_{1} \times Y_{t-1}$ or $Y_{t}-\mu=\phi_{1} \times\left(Y_{t-1}-\mu\right)$. The textbook uses both formats, but θ_{0} and μ are different values.
- Step 4: Solve for the two period ahead forecast from the autoregressive equation. $\Delta \mathrm{y}_{42}$ $=5-0.5 \times 0=5$
- Step 5: Convert the forecast of the first differences for two periods to the initial time series. $y_{42}=y_{41}+5=65$

The textbook has formulas for forecasts and variances of ARIMA processes.

- If you understand the intuition, the formulas are easy to recall and provide a good check on your work.
- If you do not understand the intuition, you will mix up the formulas for the various ARIMA processes. Focus on the intuition. After a few problems, it is easy.

