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Introduction
Recently, there has been a great deal of media coverage devoted to the Atlantic Hurricane Season.  Powerful and destructive storms such as Hurricane Andrew in 1992 and Hurricane Katrina in 2005 have increased the public’s focus on the potential dangers of tropical cyclones in the Atlantic.  Many insurance companies fear large losses associated with such storms and have begun to reduce their exposure to coastal properties, either through non-renewal or mandatory high-percentage deductibles.  The goal of this project is to fit a time series model to historical Atlantic storm data to see if it is possible to estimate the number of storms from year to year through mathematics alone.
Data
The data used for this analysis consists of all named Atlantic tropical cyclones (tropical storms and hurricanes) from 1950 – 2010, the previous 61 years of data.   A storm is given a name once its sustained winds reach 39 mph.  All data was gathered from the following website:  http://www.weather.unisys.com/hurricane/atlantic.  The data is summarized in the chart below.
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It is not necessary to adjust the data for seasonality because the number of storms is on an annual basis.  The data appears to be stationary, but over two distinct periods of time.  From 1950 – 1994 the average number of storms per year is approximately 8.5.  However from 1995 – 2010 the average jumps to nearly 14.4 storms per year.  This increase in frequency explains much of the recent focus on the Atlantic storm season.  In 2005 alone, there were 27 named storms, of which by far the most destructive was Hurricane Katrina.  
Analysis

In order to assess what time series (if any) will best fit this data, the first step is to generate a correlogram.  A correlogram corresponding to the selected Atlantic storm data is shown below.
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There are significant levels of autocorrelation until lag 15, so it would be improper to say that the autocorrelation dies rapidly.  However, when looking at lags 0, 5, 10, and 15 the autocorrelation does appear to decrease exponentially.  Also, beyond lag 15 there appears to be very little autocorrelation.  Given these observations, it is at least somewhat likely that Atlantic storm data can be described by an AR(p) model.  The general formula for an AR(p) model is shown here:
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Several values of p will be considered and the different statistics associated with each AR(p) model will be compared to determine which model best fits the data.  Only the final results of calculations will be presented here.  For more detail, please see the supporting Excel workbook.

AR(1)
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	Regression Statistics

	Multiple R
	0.208229492

	R Square
	0.043359521

	Adjusted R Square
	0.02686572

	Standard Error
	4.05298983

	Observations
	60



Durbin-Watson Statistic: 2.011


Box-Pierce Statistic:  2.428

	 
	Coefficients
	Standard Error
	t Stat
	P-value

	Intercept
	7.883207838
	1.425610723
	5.529705768
	8.0078E-07

	X Variable 1
	0.216819378
	0.133726117
	1.621368981
	0.110362892


AR(2)
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	Regression Statistics

	Multiple R
	0.317654442

	R Square
	0.100904345

	Adjusted R Square
	0.068793786

	Standard Error
	3.998746047

	Observations
	59



Durbin-Watson Statistic:  2.060


Box-Pierce Statistic:  6.824

	 
	Coefficients
	Standard Error
	t Stat
	P-value

	Intercept
	5.911676003
	1.750633703
	3.376877752
	0.001338729

	X Variable 1
	0.159821567
	0.135785594
	1.177014159
	0.244168462

	X Variable 2
	0.256032666
	0.135522023
	1.889232913
	0.064042413


AR(3)
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	Regression Statistics

	Multiple R
	0.432633894

	R Square
	0.187172086

	Adjusted R Square
	0.14201498

	Standard Error
	3.839528428

	Observations
	58


Durbin-Watson Statistic:  1.999


Box-Pierce Statistic:  13.859

	 
	Coefficients
	Standard Error
	t Stat
	P-value

	Intercept
	4.005016304
	1.872313534
	2.139073522
	0.036968186

	X Variable 1
	0.098727078
	0.132907919
	0.742823145
	0.460808149

	X Variable 2
	0.207662004
	0.132974156
	1.561671915
	0.124207351

	X Variable 3
	0.312176225
	0.135796487
	2.298853462
	0.025409611


AR(4)
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	Regression Statistics

	Multiple R
	0.438244118

	R Square
	0.192057907

	Adjusted R Square
	0.129908515

	Standard Error
	3.891915485

	Observations
	57



Durbin-Watson Statistic:  1.996


Box-Pierce Statistic:  15.636

	 
	Coefficients
	Standard Error
	t Stat
	P-value

	Intercept
	3.825807095
	2.008406436
	1.904896851
	0.062330952

	X Variable 1
	0.070139779
	0.141968461
	0.494051836
	0.623350178

	X Variable 2
	0.20041592
	0.136514199
	1.468095779
	0.148101505

	X Variable 3
	0.31528897
	0.13927124
	2.263848378
	0.027782582

	X Variable 4
	0.056104167
	0.144356248
	0.38865077
	0.699121319


AR(5)
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	Regression Statistics

	Multiple R
	0.438244118

	R Square
	0.192057907

	Adjusted R Square
	0.129908515

	Standard Error
	3.891915485

	Observations
	57



Durbin-Watson:  2.078


Box-Pierce:  29.205

	 
	Coefficients
	Standard Error
	t Stat
	P-value

	Intercept
	2.035615865
	1.936932195
	1.050948438
	0.298335288

	X Variable 1
	0.03699461
	0.131791272
	0.280706071
	0.780094126

	X Variable 2
	0.082481173
	0.131999176
	0.624861267
	0.534903448

	X Variable 3
	0.248699618
	0.130180729
	1.910418082
	0.061822718

	X Variable 4
	0.015807612
	0.134900161
	0.117180085
	0.907186789

	X Variable 5
	0.444998718
	0.13392275
	3.32280151
	0.00167217


The plots for each of the AR(p) models are shown below, along with the actual historical storm data.
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Discussion

Looking at the above graphs, none of the AR(p) models are particularly effective at describing the Atlantic storm data.  However, some of the models do a better job than others.  This is born out through various statistics.

R-Square
	Model
	R-Square

	AR(1)
	0.043

	AR(2)
	0.101

	AR(3)
	0.187

	AR(4)
	0.192

	AR(5)
	0.337


The R-square value is defined as the “proportion of variability in a data set that is accounted for by the statistical model.”  AR(5) has R2 = 0.337 which is the highest of all models considered.  However, this means that only 34% of the variability in number of Atlantic storms from year to year is explained by the model.  In order for the AR(5) model to be considered seriously, it would need a much higher value of R2​​​​​.  
Durbin-Watson
	Model
	Durbin-Watson

	AR(1)
	2.011

	AR(2)
	2.060

	AR(3)
	1.999

	AR(4)
	1.996

	AR(5)
	2.078


The Durbin-Watson statistic is defined mathematically as
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In words, this means that the Durbin-Watson statistic is a measure of the autocorrelation of the residuals for a given model.  If d = 2, this indicates that there is no autocorrelation between the residuals.  Significant autocorrelation among residuals would indicate that they do not follow a white noise process and that the model is inappropriate for the dataset.  By the Durbin-Watson statistic, the AR(3) and AR(4) models are most appropriate for the Atlantic storm data.

Box-Pierce

	Model
	Box-Pierce
	Chi-Square Value

	AR(1)
	2.428
	2.706

	AR(2)
	6.824
	4.605

	AR(3)
	13.859
	6.251

	AR(4)
	15.636
	7.779

	AR(5)
	29.205
	9.236


The Box-Pierce statistic is defined mathematically as
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The Box-Pierce test is important because if Q is greater than the
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value for a distribution with s degrees of freedom (where s is the number of coefficients in the model) then it is possible that the errors of the model are not simply white noise.  Since AR(2) through AR(5) all have
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, this statistic indicates that the AR(1) model is the only model with errors that could be white noise.  Therefore, the preferred model according to Box-Pierce is the AR(1) model.
Summary of Statistics

	Model
	R-Square
	Durbin-Watson
	Box-Pierce
	Chi-Square Value

	AR(1)
	0.043
	2.011
	2.428
	2.706

	AR(2)
	0.101
	2.060
	6.824
	4.605

	AR(3)
	0.187
	1.999
	13.859
	6.251

	AR(4)
	0.192
	1.996
	15.636
	7.779

	AR(5)
	0.337
	2.078
	29.205
	9.236


The calculated statistics for each of the considered models are summarized above.  The R-Square statistic indicates that the AR(5) model is most accurate since it is greatest for this model.  The Durbin-Watson statistic, a measure of autocorrelation among residuals, is closest to 2 for the AR(3) and AR(4) models.  This means that these two models have the lowest autocorrelation between residuals.  Finally, the Box-Pierce statistic is only less than the 
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value for the AR(1) model.  Therefore, by this metric, only the AR(1) model has errors that are white noise.  The only model not preferred by at least one of the above statistics is the AR(2) model.

Conclusions
From the previous discussion, it is hard to suggest that any one of the AR(p) models considered is a good fit for the Atlantic storm data.  There is not one model that is strong in each of the statistical measures.  Perhaps an MA(q) or ARMA(p,q) model would be better able to describe the data.  It is also possible that a time series – whether it be AR(p), MA(q), ARMA(p,q) or otherwise – is simply not the best way to fit this data.  Changes in the global climate such as El Niño / La Niña, sea surface temperatures, and even dust from the Sahara Desert can drastically affect the formation of tropical cyclones in the Atlantic from year to year.  If these conditions change, the number of past storms may not be an indicator of future storms and a time series is no longer appropriate.  If nothing else, this analysis has shown that Atlantic storm formation is a highly variable process that will continue to merit significant attention in the future.
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