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NEAS Actuarial Seminars – Time Series

Time Series Project

Fall 2010
Daily High Temperature in New York Central Park

Project Objective:

This project will analyze the daily high temperature in New York Central Park and try to fit an ARIMA model to the data. I chose New York Central Park because I am myself a New Yorker, so this was a location of interest for me. New York sees very high temperatures in the summers and very low temperatures in the winter. 
Project Data:

The data used in this analysis was collected from the NEAS website. I am using the data for station 305801 which is New York Central Park. The time period I chose was 1/1/1999 through 12/31/2005 for a total of 7 years and 2555 data points. The size of this data set is large enough to produce accurate results. I did not include the data for February 29 for years 2000 and 2004 to make seasonalized calculations easier. The data was smoothed to reduce the effect on outliers. After it was smoothed it was seasonally adjusted so that regression analysis could be performed.

Here is a graph of the entire data set:

[image: image1.emf]New York Central Park
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There appears to be a seasonal pattern to this data. In order to perform a regression analysis, the data needs to be smoothed and de-seasonalized.
Smoothing the Data:

To smooth the data, I averaged all 7 years of data into one year. A 7 year centered moving average was used. As an example, the temperature for January 3rd was calculated by averaging the daily high temperatures for January 1st, 2nd, 3rd, 4th, and 5th for years 1999-2005 essentially providing 35 data points for each day of the year—7 years, 5 data points per day. Further, the daily high temperature for January 3rd ranges from 31 degrees to 64 degrees which is a 33 degree range. The smoothed calculation for January 3rd yields a temperature of 42.77 degrees, which is closer to where most of the data point are for early January. Smoothing the data will remove the effect of outliers. 
Here is graph of the smoothed data:
[image: image2.emf]Smoothed Daily High Temp
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Seasonal Index:

After smoothing the data, I computed the seasonal index for each day of the year. To compute this value, I divided the smoothed temperature for each day by the average temperature, 62.41 degrees, of the complete data set. Next, I calculated the seasonally adjusted high temperature by dividing the daily temperature for each day by the seasonal index. As an example, the seasonal index for January 3rd is 42.77/62.41= .685. Moving forward, the seasonally adjusted high temperature for January 3rd, 1999  is 51/.685 = 74.41 degrees. This will flatten the curve. The next two graphs will show the show the effects of a seasonal adjustment. The first graph is raw data for 1999 and the second graph is the seasonally adjusted daily high temperature for 1999:
Raw data for 1999:
[image: image3.emf]Daily High Temp New York Central Park 1999
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Seasonally adjusted daily high temperature for 1999:
[image: image4.emf]Seasonal Adjusted Daily High Temp New York 

Central Park 1999
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The graph for the seasonally adjusted temperature for 1999 is flatter than the graph of the raw data for 1999, as expected.

Autocorrelation Function:

We will use the seasonally adjusted data for 1999 and examine the sample autocorrelation in order to determine whether or not the data is stationary, which is required to perform regression analysis. Looking at the previous graphs of the data, there does not appear to be a trend. The implies the time series is stationary. We will use the sample autocorrelation function to prove the data is stationary. If the function approaches zero as the lags approach infinity, this would indicate that the time series is stationary. The first graph includes 250 lags and the second graph includes only the first 50 lags:
[image: image5.emf]Sample Autocorrelation

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

191725334149576573818997105113121129137145153161169177185193201209217225233241249

Lags

Correlation


[image: image6.emf]Sample Autocorrelation
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The correlogram shows that the autocorrelation more quickly approaches zero as the lags increase. The first three displacements are significantly greater than zero: .58, .25,  and .25. This proves that it is not a white noise process and the time series is either AR(1), AR(2), or AR(3). The fact that the autocorrelations appear to be decreasing at a geometric rate beginning with the first lag would make me initially think that the time series is AR(1). We will use regression analysis to investigate this hypothesis.
Regression Analysis:

The previous analysis indicates that currents day’s temperature is dependent on the temperature of the previous days. Regression analysis is needed to show how many previous day’s temperatures are needed to predict the current day’s temperature. T represents temperature.
Regression 1 variable, Tt=A+B(Tt-1):

	Regression Statistics
	
	
	

	Multiple R
	0.575740744
	
	
	

	R Square
	0.331477404
	
	
	

	Adjusted R Square
	0.329625541
	
	
	

	Standard Error
	8.059457306
	
	
	

	Observations
	363
	
	
	

	
	
	
	
	

	ANOVA
	
	
	
	

	 
	df
	SS
	MS
	F

	Regression
	1
	11626.7046
	11626.7046
	178.996707

	Residual
	361
	23448.7016
	64.95485207
	

	Total
	362
	35075.4062
	 
	 

	
	
	
	
	

	 
	Coefficients
	Standard Error
	t Stat
	P-value

	Intercept
	27.81926132
	2.772983462
	10.03224927
	4.6958E-21

	41.01763457
	0.56931307
	0.042552848
	13.37896508
	1.9667E-33


Regression 2 variables, Tt=A+B(Tt-1)+C(Tt-2)

	Regression Statistics
	
	
	

	Multiple R
	0.59896576
	
	
	

	R Square
	0.35875998
	
	
	

	Adjusted R Square
	0.35518761
	
	
	

	Standard Error
	7.90408981
	
	
	

	Observations
	362
	
	
	

	
	
	
	
	

	ANOVA
	
	
	
	

	 
	df
	SS
	MS
	F

	Regression
	2
	12548.20339
	6274.1017
	100.426383

	Residual
	359
	22428.39424
	62.474636
	

	Total
	361
	34976.59763
	 
	 

	
	
	
	
	

	 
	Coefficients
	Standard Error
	t Stat
	P-value

	Intercept
	29.5416479
	3.076832839
	9.6013171
	1.4032E-19

	36.18603448
	0.65844273
	0.05164828
	12.74859
	5.7941E-31

	41.01763457
	-0.11715533
	0.051169191
	-2.289568
	0.02262613


Regression 3 variables, Tt=A+B(Tt-1)+C(Tt-2)+D(Tt-3):

	Regression Statistics
	
	
	

	Multiple R
	0.641710403
	
	
	

	R Square
	0.411792242
	
	
	

	Adjusted R Square
	0.406849319
	
	
	

	Standard Error
	7.560543909
	
	
	

	Observations
	361
	
	
	

	
	
	
	
	

	ANOVA
	
	
	
	

	 
	df
	SS
	MS
	F

	Regression
	3
	14286.36388
	4762.1213
	83.3094703

	Residual
	357
	20406.77124
	57.161824
	

	Total
	360
	34693.13512
	 
	 

	
	
	
	
	

	 
	Coefficients
	Standard Error
	t Stat
	P-value

	Intercept
	23.19230769
	3.300115172
	7.0277268
	1.0709E-11

	74.4112499
	0.719422479
	0.050546172
	14.232977
	1.0047E-36

	36.18603448
	-0.312130523
	0.059975316
	-5.204316
	3.292E-07

	41.01763457
	0.233845344
	0.049597063
	4.714903
	3.4732E-06


The regression statistics show the following:
· The t-value for the previous day (Tt-1) is very high in all three scenarios indicating that Tt-1 does play a role in determining Tt.

· The F statistic is highest in the case of only one variable

· The R-squared does not significantly increase as we add more variables to the model. The R-squared value will always be at least as high as a model with less variables.

· The standard error does not substantially decrease as we add more variables.

Durbin-Watson Test:

Next, we perform the Durbin-Watson test to determine if there is serial correlation.

Null Hypothesis: No serial correlation for the regressions

	Number of X Variables
	Durbin-Watson Statistic
	dl
	du
	Result

	1
	1.792331
	1.65
	1.69
	Accept

	2
	1.846759
	1.63
	1.72
	Accept

	3
	1.987832
	1.61
	1.74
	Accept


We accept the null hypothesis that there is no serial correlation for all three regressions.

Box and Pierce Q Statistic:

 The Box and Pierce Q statistic tests the joint hypothesis that all of the autocorrelation coefficients are zero meaning the residuals have been generated by a white noise process.
K=150

Null Hypothesis: White noise residuals

	Number of X Variables
	Box and Pierce Q Statistic
	Critical 10% Level
	Result

	1
	75.0320691
	171.51
	Accept

	2
	72.49578803
	171.51
	Accept

	3
	70.3096403
	171.51
	Accept


We can accept the null hypothesis of white noise residuals for all three regressions.

Conclusion:

After considering the results of all the statistical tests and the regression analysis and by the principle of parsimony, we can conclude the best model we can produce is AR(1) in the form of:
Tt = 27.82 + .569(Tt-1)

Where T’s are the seasonally adjusted average high temperate in New York Central Park. While AR(2) and AR(3) would have also been ‘appropriate’ models, we always seek to balance complexity with accuracy. Since AR(2) and AR(3) were not significantly better than AR(1), we choose the simpler model. 

With weather, and especially looking at only high temperatures, there will always be spikes that a simple model will not be able to predict. This model tells us that the daily high temperature will usually stay around the average high temperature and while there are spurts of hot weather or cold weather, the high temperature will be close to the average. This is a very simple model created in excel and is the best model available for the purpose of this project, although it may not be the best model overall. 
