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1 Introduction

In 2010, Simulated Auto Insurance, Inc. has requested an analysis of the payout
patterns resulting from accident claims. A single car accident, depending on its
severity, can generate claims for several years. Payment data is collected over a
period of several years and categorized according to the year of each car accident
and the year in which losses were paid. The resulting table of aggregate data
is called a paid loss triangle. Simulated Auto Insurance has a paid loss triangle
that needs to be analyzed to estimate the inflation patterns associated with car
accident claims.

For this project, I simulated and analyzed a paid loss triangle. I performed
my simulation and analysis using the free statistical package R.

2 Simulating a Paid Loss Triangle

Losses can be described according to three dimensions: the calendar year in
which losses were paid, the year of the accident that caused the losses (the
accident year), and the number of years elapsed since the accident (the devel-
opment year). These three dimensions are perfectly collinear; the calendar year
is always the sum of the accident year and the development year. A paid loss
triangle is constructed by collecting payment data over a period of several years
and then categorizing it according to the year of each car accident and the year
in which losses were paid.

By selecting any two dimensions as a pair of axes, the aggregate losses from
all claims can be displayed in a table. The entries in this table will form a
triangle; the “missing” entries correspond to future losses due to past accidents.
Any pair of dimensions can be used to uniquely select a cell in the paid loss
table. For an incremental paid loss table, each cell will list the total losses
paid during one particular calendar year for accidents that happened in one
particular accident year. These losses can be described in terms of an inflation
pattern, a payout pattern, and an exposure pattern.

The exposure pattern determines the number of insured cars for each acci-
dent year, their risk classes, and the distribution of accidents for the year. Each
accident generates a set of latent loss payments, where each latent payment
corresponds to a single real-valued payment to be made at some future time
after the accident. For each latent payment, a payout pattern determines an
associated cost distribution and an associated time-of-occurrence distribution;
the cost will have to be multiplied by a price index to incorporate the effect of
inflation.
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Based on these ideas, it is possible to construct a fine-grained simulation of
auto accidents and their losses. For a single accident year, each risk class of
drivers would require a counting process (e.g. a Poisson process) to determine
the number of accidents that occur. For each accident, another series of ran-
dom draws would determine the characteristics of the accident (e.g. the speed
of collision, number of passengers, etc), and then these characteristics would de-
termine the parameters of several more random draws to compute the number,
timing, and magnitude of paid losses.

A software-based simulator with this level of complexity is not hard to con-
struct, if the appropriate models and parameters are readily available. On the
other hand, selecting the appropriate models and parameters for each simulated
random variable is likely to be arduous.

Since a fine-grained simulator, at this level of complexity, is far beyond the
scope and purpose of this project, massive simplifications need to be made. The
simulator will be simplified by throwing away almost the entire structure of ac-
cidents and loss payments. Instead, the simulator will compute the expectation
of each incremental loss and then incorporate random noise to generate a loss
triangle.

The simplified simulator is defined by an inflation pattern and a payout
pattern.

An inflation pattern is defined by a price index, or a discount factor: let
vm equal the discount factor for calendar year m. It is assumed that the price
index, 1/vm, is constant for each year, with a discrete jump at the end of the
year. If the annual inflation rates are i1, i2, . . . , then the discount factors are

v0 = 1, vm =

m∏
k=1

(1 + ik)−1

A payout pattern is defined by a cumulative distribution function Fn(t) for
each accident year, where Fn(t) is the expected inflation-corrected cumulative
proportion of losses incurred within the first t years after an accident during
year n. This loosely corresponds to the distribution function of the time-of-loss
random variable T (0) for a randomly selected latent payment due to an accident
in year n, except that the distribution is defined to incorporate the magnitude
of latent payments in addition to their timing.

It is assumed that the payout pattern is the same for all accident years,
Fn(t) = F (t). The expected incremental proportion of inflation-corrected losses
incurred during calendar year m due to an accident in year n is F (m−n+ 1)−
F (m− n), or m−n|1q0.

An exposure pattern is avoided by assuming that the number of exposure
units is a known quantity for each accident year. Real loss data would be ad-
justed by dividing the losses for each accident year by some measure of exposure
for that year. For simulation purposes, exposure is assumed to be a constant;
let S equal the the expectation of inflation-corrected cumulative future losses
for one “unit” of exposure.
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With these definitions, the expected nominal loss paid during calendar year
m, for an accident that happens in year n, is given by

E[Ln,m] = S
m−n|1q0

vm

To simulate an incremental paid loss triangle, two additional pieces of in-
formation are needed: the number of years, ω, to simulate, and the amount of
noise, or volatility, σ, to incorporate into each observed incremental paid loss.
Each observed loss is computed by multiplying the expected loss by a zero-mean
log-normal variate whose underlying normal distribution has a variance of σ2.
Letting Zn,m denote a set of independent standard normal variates, the observed
incremental losses are given by

Ln,m = S
m−n|1q0

vm
exp

(
−σ

2

2
+ σZn,m

)

3 Data to be Analyzed

I simulated a 10 by 10 paid loss triangle with the following parameters: I used
a geometric payout pattern with a 5% decay rate, k|1q0 = (0.05)(0.95)k, I used
a linearly increasing inflation rate of 3% for the first year, increasing by 0.5%
each year thereafter, and I used a volatility of 2% to generate observed losses.
The inflation rate for the last year is 7%.

ik = 0.03 + 0.005(k − 1) (k = 1, 2, . . . , 9) σ = 0.02

The R script generator.R generates a new data-set with these parameters.
The simulated data is in the file data.txt.

Having generating this data-set, I need to perform the role of an analyst. A
real-world analyst can never discover the true values of statistical parameters,
but I happen to know what they are because I generated my data through simu-
lation. Therefore, I will need to pretend that I don’t know the true parameters.

I am giving myself the following assumptions:

• The data represent incremental losses.

• The data have been corrected for business exposure.

• The payout pattern is geometric, with an unknown decay rate.

• The inflation pattern is unknown.

• Each incremental loss datum incorporates log-normal multiplicative noise
with a constant variance.

• The goal of analysis is to estimate the inflation pattern and the payout
decay rate.
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4 Initial Analysis

My goal is to estimate the inflation pattern and the payment decay rate. A
constant payment decay rate of d produces the payout pattern k|1q0 = d(1−d)k.

I initially assumed that the inflation rate is constant, so vm = (1 + i)−m.
With this assumption, observed losses are

Ln,m = S d(1− d)m−n (1 + i)m exp

(
−σ

2

2
+ σZn,m

)
By taking logarithms, this equation can be transformed for linear regression.

I will refer to this as model M0.

logLn,m = logS + log d− σ2

2︸ ︷︷ ︸
α

+ (m− n) log(1− d)︸ ︷︷ ︸
β1

+m log(1 + i)︸ ︷︷ ︸
β2

+ σZn,m︸ ︷︷ ︸
εn,m

The response variable Y and the regressors X1, X2 are given by

Yi = logLn,m
Xi1 = m− n
Xi2 = m

 where

{
0 ≤ n ≤ m ≤ ω − 1

i = ωn− n(n+1)
2 +m+ 1

I estimated the parameters of model M0 using linear regression, and obtained
the following results. A few diagnostic tests will cast doubt on this estimated
model.

Ŷ
R2

adj=0.9574
= − 3.055181

(0.009755)
+ − 0.051675

(0.001738)
X1 + 0.053293

(0.001738)
X2

The estimated payout decay rate is d̂ = 1− e−0.051675, which is about 5.4%.
To compute the endpoints of a 95% confidence interval for this estimate, I
calculated the endpoints

1− e−0.051675±(1.96)·0.001738

and obtained the interval 4.7% ≤ d̂ ≤ 5.4%.
The estimated inflation rate is î = e0.053293−1, which is about 5.5%. A 95%

confidence interval for this estimate is 5.1% ≤ î ≤ 5.8%.

5 Diagnostics for M0

To check the quality of model M0, I examined its residuals and I performed an
F-test of the assumption of a constant inflation rate.
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5.1 Residuals for M0

The first diagnostic test is an examination of the residuals of M0. The upper-
left panel of figure 5.1 shows a plot of studentized residuals against calendar
year. The smoothed residual plot has a clear parabolic shape with a minimum
around year 5 or 6. Estimated incremental losses are below actual losses at the
beginning and end of the decade, and above actual losses in the middle of the
decade. This suggests that the inflation rate is increasing over time.

When the residuals for each regression are plotted against development year,
accident year, or fitted losses, the plots all look similar, and all of them show
a weak “V” relationship. In all three cases, there are fewer data points toward
the right-had side of the plot, thus the right-hand end of the lowess curve will
be overly influenced by noise. Since all of these plots show weak relationships,
I will investigate the relationship between incremental losses and calendar year
first.

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

0 2 4 6 8

−
2

−
1

0
1

2
3

Residuals vs Calendar Year

Calendar Year

S
tu

de
nt

iz
ed

 R
es

id
ua

ls

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

0 2 4 6 8

−
2

−
1

0
1

2
3

Residuals vs Development Year

Development Year

S
tu

de
nt

iz
ed

 R
es

id
ua

ls

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

0 2 4 6 8

−
2

−
1

0
1

2
3

Residuals vs Accident Year

Accident Year

S
tu

de
nt

iz
ed

 R
es

id
ua

ls

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

−3.0 −2.9 −2.8 −2.7 −2.6

−
2

−
1

0
1

2
3

Residuals vs Fitted log(Loss)

Fitted log(Loss)

S
tu

de
nt

iz
ed

 R
es

id
ua

ls

Figure 5.1: Residual Plots for Model M0
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5.2 F-Test for Constant Inflation

The second diagnostic test is an F-test to determine whether the rate of inflation
is constant or changing. The null hypothesis is that the inflation rate is the same
for all years, and the alternative is that the inflation rate is changing. The null
hypothesis H0 corresponds to model M0, and the alternative hypothesis H1

corresponds to model M1. Model M1 is a linear regression model that allows
a different inflation rate for each year. This model is derived in Appendix A.
Model M0 is clearly nested within M1.

H0 : i1 = i2 = · · · = iω−1
H1 : il 6= im for some pair of years l,m

When linear regression is used to estimate the parameters of model M1,
eight of the nine estimated annual inflation rates are statistically significant.
Moreover, when the estimated inflation rates are plotted, there appears to be a
clear upward trend, as shown in Figure 5.2.

The residual vector from modelM0 is a 52-dimensional vector with a squared-
length of 0.038877. Model M1 splits this residual vector into an 8-dimensional
explained component with a squared-length of 0.021478, and a 44-dimensional
unexplained component with a squared-length of 0.017399. Therefore, model
M1 explains 55% of the residuals from M0, using 15% of the residual dimensions.

I would like to evaluate the probability that 15% of the residual dimen-
sions would explain at least 55% of M0’s residuals, given the assumption that
M0’s residuals have no remaining unexplained pattern (i.e. the residuals are
independent normal with zero mean and constant variance). To evaluate this
probability, I use the fact that the ratio of unexplained residuals per unexplained
degree of freedom to explained residuals per explained degree of freedom,

ESS1/dfresidual1

(ESS0 − ESS1)/(dfresidual0 − dfresidual1 )
=

0.021478/8

0.017399/44
= 6.7893,

is a realization of a distribution that doesn’t depend on any unknowns, such
as the unknown residual variance. The corresponding distribution is an F-
distribution with 8 and 44 degrees of freedom.

The test statistic of 6.7893 has a p-value of about 9 · 10−6, which is highly
significant. There is chance of less than one in one-hundred-thousand that a
model such as M1 would explain as much as it did of M0’s residuals, if there is
no residual pattern to be explained. Based on this result, the F-test rejects the
null hypothesis H0 and I conclude that the assumption of constant inflation is
not adequate.

6 An Improved Model

Consider model M1. This model has an adjusted R2 of 97.75%, and eight of
the nine estimated annual inflation rates are statistically significant. Moreover,
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the residual plots for model M1, shown in Figure 6.1, don’t seem to show any
significant patterns.

Keeping in mind that the adjusted R2 already incorporates a penalty for
having nine estimated inflation rates instead of one, it would appear that model
M1 is a very good model for this data-set. Nevertheless, the estimated inflation
rates seem to follow a linear trend, and it would be prudent to try fitting a
model that assumes a linearly increasing inflation rate.

To derive a model based on this assumption, I will start by assuming that
inflation is continuous. With a constant annual inflation rate of i, the continuous
inflation rate is δt = log(1 + i). The corresponding discount factor at time t is

vt = exp

[
−
∫ t

0

δt dt

]
= (1 + i)−t

and in particular, the discount factor for calendar year m, at the beginning of
the year, is vm = (1 + i)−m.

If inflation is increasing linearly, then the continuous inflation rate is δt =
β2 + β3t for some constants β2 and β3. The discount factor at time t is

vt = exp

[
−
∫ t

0

δt dt

]
= e−β2t−β3t

2/2

and in particular, the discount factor for calendar year m, at the beginning of
the year, is vm = e−β2m−β3m

2/2.
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Figure 5.2: Estimated Annual Inflation Rates from Model M1
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Now, my incremental loss data-set does not include any information on how
losses were distributed over the course of a year, so it would seem that I have to
make an assumption here. I will assume that for each calendar year, all losses
for that year are incurred at the beginning of the year in one lump sum; I’ll
call this “Assumption A”. This is not a realistic assumption, but it is essentially
equivalent to the assumption that the price index is constant during each year,
with a discrete change at the end of the year. Moreover, any assumption that
I might make, such as a uniform distribution of losses, will ultimately translate
into a scale factor to be applied to the incremental losses. Since my response
variable is the logarithm of incremental losses, that scale factor will show up in
the intercept term, α, of my linear regression, where it will have no effect on my
estimates of inflation or payout rates. Therefore, “Assumption A” is acceptable
for my purposes.

A linearly increasing inflation rate is easily modeled by augmenting model
M0 with the square of the calendar year as an additional regressor. I will refer
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Figure 6.1: Residual Plots for Model M1
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to the following as model M2.

logLn,m = logS + log d− σ2

2︸ ︷︷ ︸
α

+ (m− n) log(1− d)︸ ︷︷ ︸
β1

+mβ2 + m2β3 + σZn,m︸ ︷︷ ︸
εn,m

The response variable Y and the regressors X1, X2, X3 are given by

Yi = logLn,m
Xi1 = m− n
Xi2 = m
Xi3 = m2

 where

{
0 ≤ n ≤ m ≤ ω − 1

i = ωn− n(n+1)
2 +m+ 1

I estimated the parameters of model M2 using linear regression, and obtained
the following results.

Ŷ
R2

adj=0.9792
= − 2.9874711

(0.0113729)
+ − 0.0516752

(0.0012153)
X1 + 0.0200647

(0.0046284)
X2 + 0.0031347

(0.0004313)
X3

The estimated payout decay rate is d̂ = 1−e−0.0516752, which is about 5.0%.
A 95% confidence interval for this estimate is 4.8% ≤ d̂ ≤ 5.3%.

The estimated inflation rate for each year depends on a linear combination
of the two coefficients β2 and β3. I can determine the estimated inflation rate for
each year, but I cannot easily determine the corresponding confidence intervals.
The estimated discount factor for year m is

îm = eβ2+β3(2m−1) − 1

For year 1, î1 = 2.3%. For year 9, î9 = 7.6%

7 Diagnostics for M2

The adjusted R2 for model M2 is 97.92%, which is only marginally better than
the adjusted R2 of 97.75% for model M1. To check the quality of model M2, I
examined its residuals and I performed a pair of F-tests.

The first diagnostic test is an examination of the residuals of M2. The
residual plots, shown in Figure 7.1, don’t seem to show any significant patterns.
This is a good thing.

The second diagnostic test is an F-test of the hypothesis of a linear inflation
rate. Consider the following three hypotheses:

H0 : i1 = i2 = · · · = iω−1
H2 : i1, . . . , iω−1 follow a linear relationship
H1 : il 6= im for some pair of years l,m

Each hypothesis (H0, H2, H1) corresponds to the same-numbered model
(M0, M2, M1). The models are nested; M0 is nested within M2, which is
nested within M1. Model M0 has 3 explanatory dimensions: two regressors and
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an intercept. Model M2 adds one explanatory dimension to M0, and model
M1 adds 7 explanatory dimensions to M2, leaving model M1 with 44 residual
dimensions.

Since I want to test the null hypothesis H2 (linear inflation), I need to
compare it to the the alternative H1 (annually varying inflation). An F-test
between models M2 and M1 yields a p-value of 0.8654; this means that there
is an 87% chance that a model such as M1 would explain as much of M2’s
residuals. This F-test fails to reject the null hypothesis of linear inflation.

As a separate F-test, I want to compare model M0 with M2. Since I have
already rejected H0, there is no point in rejecting it again. An F-test between
models M0 and M2 yields a p-value of about 7 ·10−9. This would reject the null
hypothesis H0, compared to the alternative hypothesis H2, but I do not intend
to conduct a hypothesis test.

This p-value of 7 ·10−9 is three orders of magnitude smaller than the p-value
of 9 · 10−6 obtained when comparing M0 with M1. Model M2 actually explains
52% of M0’s residuals, using just one additional explanatory dimension. Model
M1 requires 8 additional explanatory dimensions to explain 55% of of M0’s
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Figure 7.1: Residual Plots for Model M2
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residuals. Since model M2 explains so much with so little, models such as M2

are over one-thousand times less likely to occur by chance than models such as
M1.

8 Conclusion

If I compare model M2 (linear inflation) with model M1 (annually varying infla-
tion), I notice there are few differences between them. Both models have about
the same adjusted R2, and neither model has unusual residuals. The main fea-
ture that makes model M2 (linear inflation) “better” than model M1 (annually
varying inflation) is the fact that M2 has fewer parameters and yet it is still just
as good of a fit as M1. Therefore, I conclude that model M2 is the best model
for my data-set, out of the models that I considered.

Ŷ = − 2.9874711
(0.0113729)

+ − 0.0516752
(0.0012153)

X1 + 0.0200647
(0.0046284)

X2 + 0.0031347
(0.0004313)

X3

9 Evaluation

In my simulation, the true payout decay rate is 5%, and the true inflation rate
increases linearly from 3% to 7%. My final model, M2, estimated a 5% decay
rate, which is correct. It also estimated inflation rates that increase linearly
from 2.3% to 7.6%; these estimates turned out to be fairly close to their true
values.

I would like to note that I tried increasing the simulated volatility from 2%
to 3%. With more volatility, the results became less obvious. I realized that I
would tend to specifically look for evidence of a linear inflation trend, or I would
bias my interpretation of data and plots in favor of such a trend, even though
I’m not supposed to know in advance that such a trend exists. For this reason,
I decided to stick with 2% volatility for my simulation.
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Appendix A Derivation of Model M1

I need to formulate a linear regression model that can handle a different inflation
rate for each year. If the annual inflation rates are i1, i2, . . . , then the price index
for each year is 1/vm where

v0 = 1, vm =

m∏
k=1

(1 + ik)−1, m = 1, 2, . . . , ω − 1

With this assumption, observed losses are

Ln,m = S d(1− d)m−n 1
vm exp

(
−σ

2

2 + σZn,m

)
= S d(1− d)m−n

∏m
k=1(1 + ik) exp

(
−σ

2

2 + σZn,m

)
Since there is only one observation for calendar year zero, and more observa-

tions for later calendar years, I rearranged this equation to correct for inflation
by working backwards from year ω−1. Letting I[c] denote the indicator function
for condition c,

Ln,m = S d(1− d)m−n 1
vω−1

vω−1

vm exp
(
−σ

2

2 + σZn,m

)
= S

vω−1 d(1− d)m−n
∏ω−1
k=m+1(1 + ik)−1 exp

(
−σ

2

2 + σZn,m

)
= S

vω−1 d(1− d)m−n
∏ω−1
k=1 (1 + ik)−I[k≥m+1] exp

(
−σ

2

2 + σZn,m

)
Taking logarithms yields an equation suitable for linear regression. This

equation will be referred to as model M1.

logLn,m = logS + log(vω−1) + log d− σ2

2︸ ︷︷ ︸
α

+ (m− n) log(1− d)︸ ︷︷ ︸
β1

+
∑ω−1
k=1 log(1 + ik)︸ ︷︷ ︸

β2,...,βω

(−I[k ≥ m+ 1]) + σZn,m︸ ︷︷ ︸
εn,m

The response variable Y and the regressors X1, X2 are given by

Yi = Ln,m
Xi1 = m− n
Xik = −I[m ≤ k − 2]

 where


0 ≤ n ≤ m ≤ ω − 1

i = ωn− n(n+1)
2 +m+ 1

2 ≤ k ≤ ω
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