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1. Introduction

The unemployment rate is a good economic indicator. For example the high
unemployment rate has raised many social and economic problems. So it can help to
determine impacts to both the insurance and financial market. In this project, we will
focus of the analysis of the US female monthly unemployment rate from 1995 to 2008.
In this project, we used data from 1995 to 2006 to develop of a time series model and to
forecast 2007 to 2008 unemployment rate to evaluate the model. The data is from NEAS
of SERIES 4.

2. Model Specification

We can determine the stationarity of the series by looking at the data itself or
looking at the sample autocorrelation function of the series. If the sample autocorrelations
dampen to zero as lag k increases, the series is stationary. Although this series does

dampen to zero, there are significant spikes every lag of twelve.
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This is an indication that we should take twelve-month differences to remove

these spikes. Below is the new twelve month differenced series:
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Below is the first autocorrelations of the new twelve month differenced series:

Autocarrelation Function
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It appears that these points are declining in a geometrical pattern. This is an
indication that an autoregressive model should be used. There is no evidence that any
moving average terms are present. We will therefore proceed with developing several

autoregressive models.

3. Estimation Method
If there are no moving average terms, we can use a simple linear regression to
determine our parameters. Since we are using twelve-month differences, we lost 12 data

points. We will also leave the last 14 points out of the model in order to use those points



as a check of our model accuracy. We will begin with the AR(1) model. Below is our
estimated model:

Coefficients 2

Unstandardized Standardized
Coefficients Coefficients
Model B Std. Error Beta t Sig.
1 (Constant) | -1.371E-02 016 -.858 391
YT 1 908 022 908 41.729 .000

a. Dependent Variable: YT

The AR(1) model is: y;=-.0.01371 + .0.908y:.1
The adjusted R?is 0.825. It show y; and y:.1 have highly relationship.

Model Summary
Adjusted R | Std. Error of
Model R R Square Square the Estimate
1 0084 825 825 30118

a. Predictors: (Constant), YT _1

At Normal Probablity Plot :the AR(1) model residuals’ distribution is approximating
Normal distribution.

The AR(1) model residuals are scattered alone with the zero axis and the deviation almost
fall into the interval (-0.5, 0.5). The AR(1) model residuals are accepted.
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This AR(1) model residuals would produce the following autocorrelation points:
This follows along very closely with our sample autocorrelation function, one sign that

this may be a good model.
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Let’s now turn to an AR(2) model. Below is our estimated model:
Coefficients 2
Unstandardized Standardized
Coefficients Coefficients

Model B Std. Error Beta t Sig.
1 (Constant) | -1.006E-02 015 -.650 516

YT 1 .665 050 .665 13.220 .000

YT 2 268 .050 .208 5.330 .000

a. Dependent Variable: YT

The AR(2) model is : y; = -.001006 + .665y;.; + .268Y;.,



Model Summary

Adjusted R | Std. Error of
Model R R Square Square the Estimate

1 9154 .838 .837 .29095
a. Predictors: (Constant), YT 2, YT 1

Both of two variables y;.; and y.., are signinificent and the adjusted R increases from
0.825 to 0.837,s0 the AR(2) model is better then the AR(1) model.

At Normal Probablity Plot :AR(2) model residuals’ distribution is approximating Normal
distribution.

Marmal Probability Plat: DIFF
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The AR(2) model residuals are scattered alone with the zero axis and the deviation almost
fall into the interval (-0.5, 0.5). The AR(2) model residuals are accepted.
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This AR(2) model residuals would produce the following autocorrelation points:
This follows along very closely with our sample autocorrelation function, one sign that

this may be a good model.

Autocarrelation Function
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Let’s now turn to an AR(3) model. Below is our estimated model:
Coefficients 2
Unstandardized Standardized
Coefficients Coefficients

Model B Std. Error Beta t Sig.
1 (Constant) | -8.757E-03 015 -.568 571

YT_1 672 052 673 12912 .000

YT 2 285 061 .286 4.689 .000

YT 3 -2.681E-02 052 -.027 -515 .607

a. Dependent Variable: YT

The AR(3) model is : y;=-.008757 + .672.1 + .285y;., - .002681y;.3

Model Summary
Adjusted R | Std. Error of
Model R R Square Square the Estimate
1 9164 .839 838 28984

a. Predictors: (Constant), YT 3, YT 1, YT 2

The addition of the next term adds almost nothing to the model. The adjusted R? barely
increases, and the coefficient for the new term is nearly zero. The P-value for the new
term is also very high. So we stop to explore more models and accept the AR(1) model
and the AR(2) model.



4. Evaluation
We will now evaluate the accuracy of the model by forecasting 2007 to 2008
unemployment rate and compare it to the data that we intentionally left out of the model

estimation.

The AR(1) model forecasts is red line and 90% confident interval is green line in

below Figure.
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The AR(1) model forecasts is red line and 90% confident interval is green line in

below Figure.
Forecasts; Model:(2,0,00 Seasonal lag: 12
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The AR(1) model forecast line is vary similar to the AR(2) model forecast line,
so we merge two forecast lines and focus on the last 14 point(2007-Jan to 2008-Feb).The

graph below showcases both the actual data points and the forecasted points. There are



three Series : actual data , the AR(1) model forecasted data and the AR(2) model
forecasted data.
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The AR(1) model and the AR(2) model are closely to actual series for only a short
time. Both of two model are only useful for a few months, and thus may not be reliable
for longer-term predictions. The AR(2) model adjusted R?is higher then the AR(L) model.
But the AR(1) model’s forecasted data is more closely to actual series then the AR(2)

model’s.
5. Conclusion

The US Female unemployment rates may be forecast by applying the AR(2)
model y; = -.001006 + .665Y:.1 + .268y:, or the AR(1) model y; =-.0.01371 + .0.908y.
1. The AR(2) model’s adjusted R?is better then the AR(1) model, because the adjusted R
increases from 0.825 to 0.837.But after comparing actual data, the AR(1) model’s
forecasted data is more closely to actual series then the AR(2) model’s and the AR(1)
model has fewer variable. In addition, structural economic models may be a better
predictor of the unemployment rate. Example: Economists presume that unemployment
rates are correlated with other macroeconomic indices, such as GDP and inflation.
Female adult unemployment rates may reflect school-age children with vacation in the
summer. We can do more research on those variables to get better model.
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