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Monthly Buspassengers in Iowa City, IA 
The purpose of this student project is to develop a time series model for the number of monthly buspassengers in Iowa City, Iowa. The original data series I used for this project came from the following website, http://www.sci.usq.edu.au/staff/dunn/Datasets/TimeSeries/buspassengers.html, I was able to find data from September 1971 through December 1982. 
1. First I determined and analyzed the autocorrelation function of the first differences.

2. Then I estimated model parameters using the first differenced series with a 12 month lag

3. Next I analyzed the results using regression methods and forecasted series

4. Last, I decided to deseasonalize the data and hypothesize which model would work best with the deseasonalized data
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Fitted the Model by Observing first differences
In the above graph, one can tell there is an annual trend present in the data. A series is not considered stationary if it contains any trend. Therefore, I took the first differences to see if that resulted in a stationary series. Below you can see the graph of the autocorrelations of first differences. As you can see, as “lag k” gets larger, the auto correlations tend to zero. This implys the data series of first differences could be stationary.
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Parameter Esimatation

From the graph of the autocorrelations of first differences, it is evident that there is a strong relationship between months in a year. This makes perfect sense, due to the changes in weather seasons in Iowa City. Also, different months may have more University students present (and taking advantage of the bus transportation system) than others. Spikes in the graph of the autocorrelations are indicative of the moving average term in an ARIMA model. Because there is such a high correlation between corresponding months in a year, I chose the ARIMA (1,1,0) using 12 month lagged first difference as a model to test. Next I used regression analysis because the lagged dependent variable can be used or thought of as an independent variable.
Model – ARIMA (1,1,0)
w(t) = ς + ε(t) φ*w(t-12)

w(t) = y(t) – y(t-1)
Analyze Regression Results

Below is the least squares regression output.

[image: image3.emf]Regression Statistics

Multiple R 0.886476

R Square 0.785839

Adjusted R Square 0.784069

Standard Error 514.1778

Observations 123


[image: image4.emf]Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%

Intercept -7.135 46.388 -0.154 0.878 -98.973 84.703 -98.973 84.703

X Variable 1 0.963 0.046 21.071 0.000 0.872 1.053 0.872 1.053


From the regression analysis we obtain an intercept of -7.14 and the autoregressive coefficient parameter of 0.96. This model produced a fairly high R-square value and a fairly low t-statistic which are both indicators of a good model. We also obtain a high p-value of almost 0.88. 

I also performed the Durban – Watson test for serial correlation. The Durban –Watson test statistic is based on the residuals from the least-squares regression. If the DW statistic is close to 2, there is no serial correlation. Positive serial correlation is when the DW stat is below 2 and negative serial correlation is evident if the DW stat is above 2. I came up with a DW-stat of 1.976. From this I can assume there is very little, if almost none, positive serial correlation in the model.

Model Forecast
I created forecasts for both the Original Series versus the Forecasted Series and the Original Observed First Differences and the Forecasted First Differences. 
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Each of these forecasts line up very closely with the actual data. In when comparing first differences, unless one zooms a lot more, it looks as if they are the same. Using the raw data, I obtained a rather simple and acceptable time series model. However, I dealt with the seasonality trend by using a 12 month lag in the ARIMA model. I’m now going to take a different approach and deseasonalize the data before selecting a model.

Adjusting the Data for Seasonal Trend
There is a definite seasonal trend apparent in the raw collected data. There are a lot more buspassengers in Iowa City during the winter months compared to the summer months. To deseasonalize the data I first developed the 12 month central moving average. Then, I divided the actual number of buspassengers for that month by the corresponding centered moving average to obtain a monthly index. Next, I determined the average of the monthly indexes by month. (I averaged all the January Indexes available to obtain an average January Monthly Index). Then I summed the 12 average monthly indexes, 12.01. From this I created an adjusted monthly indexing factor by multiplying the average monthly index factor by 12 and dividing it by 12.01. At this point, I backed into the Adjusted Monthly Data values for buspassengers in Iowa city.
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From the graph you can see the data is a lot smoother than the original data series. The increases and decreases in the monthly data aren’t as sporadic as before. The data is much more smoothed, if not steady, until about August of 1977. Below is the graph of the Autocorrelations of the first differences in the seasonally adjusted data to determine stationarity. Again the autocorrelations tend to zero as lag-k increases then continues to hang around zero with some stability indicating it could be a stationary series.
[image: image8.emf]Autocorrelation of First Differences in Seasonally Adjusted Data

(1.00)

(0.80)

(0.60)

(0.40)

(0.20)

0.00

0.20

0.40

0.60

0.80

1.00

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 101106111116121126


If I were to test this data moving forward, I would examine the Autocorrelation (above) and partial autocorrelation function to determine my Moving Average and Auto Regressive parameters. The partial autocorrelation function is used for guidance in determining the order of the AR process and the spikes in the Autocorrelation function are indicative of the MA terms. If I would do further analysis on the data I may try an ARIMA(1,1,0), ARIMA(2,1,0) or even an AR(1) with 12 month lagged first differences and compare all the results to determine the best possible model fitted to the time series data.
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