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VEE Student Project – Time Series

Fall 2010

Introduction. Time series analysis is used to examine monthly non-farm unemployment rates for the State of Kansas for the period starting January 2001 and ending with November 2010 (the latest available data point).  Specifically, I investigate whether or not some ARIMA model is appropriate, and what, if any, seasonality adjustments to make.

Data. I will use 113 data points from 2001-2010 to fit the model and the 6 most recent 2010 data points to check forecast accuracy. This data set was obtained from the Kansas Department of Labor (KDOL)
 and the U.S. Bureau of Labor Statistics. To perform this analysis, I have used the statistical package R. A complete script which should generate all of the graphs (except, of course, the ones from Excel, which are noted as such) is included as Appendix A.
Analysis. Figure 1 below is a plot of the original time series (using Excel 2010).
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Figure 1: Plot of Kansas unemployment rates
I strongly suspected that the data were seasonal, as one would expect – industries such as construction have layoffs in winter months, for example. The KDOL publishes both seasonally adjusted and non-seasonally adjusted data and advises that “using year-to-year changes would perhaps be more useful in understanding changes in the data that reflect events which are non-recurring. Looking at year-to-year changes allows users to decipher changes that occurred due to an increase or decrease in economic activities or other events that do not reoccur on a regular basis
.” We’ll examine this statement as well.

If we are to fit an ARIMA model, we’ll need our data to be stationary. Clearly by examining the plot in Figure 1, we see that it is not. Perhaps a difference will help. Plots of the first difference and its ACF and PACF are shown in Figures 2 and 3 below.
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Figure 2: Plot of first differences of unemployment rates.
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Figure 3: ACF and PACF of first differences of unemployment rates.

We appear to have dealt with the linear time trend. In fact, if one uses R to fit a linear time trend to this series, one gets 
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The R-squared of this model is horribly low (less than -.01), so it’s won’t work as a model of unemployment rates, but I believe it will allow us to assume stationarity. The ACF displays a seasonal sinusoidal behavior that gradually decreases with time. It doesn’t display properties we associate with either an AR(1) or MA(1), so we’ll try ARIMA(1,1,1) for the non-seasonal component. To account for the KDOL’s advice regarding year-over-year comparisons, We’ll also try ARIMA(1,0,1)12 for the seasonal component. 
Here is the R output of that fit together with Figure 4, a diagnostic plot of the fitted model. The third of the plots, the Ljung-Box statistic, doesn’t look promising.

arima(x = uets, order = c(1, 1, 1), seasonal = list(order = c(1, 0, 1), period = 12))

Coefficients:

          ar1     ma1    sar1     sma1

      -0.3848  0.2807  0.9605  -0.4932

s.e.   0.3250  0.3281  0.0235   0.1243

sigma^2 estimated as 5.482e-06:  log likelihood = 510.15,  aic = -1012.3
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Figure 4: Diagnostic plot of ARIMA(1,1,1)x12(1,0,1)

I examined a q-q plot of the residuals, which is shown below as Figure 5. Additionally, I ran the Shapiro-Wilk test on the residuals and got a test statistic of 0.9669 with a p-value of 0.006654, which leads us to reject the idea that the residuals came from a normally-distributed population. The plot indicates some deviation from normality.
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Figure 5: Q-Q plot of residuals, first fit attempt.
We can conclude, then, that ARIMA (1,1,1)x(1,0,1)12 is probably not the best fit for this data. There doesn’t seem to be anything overt in the foregoing plots to suggest a next step. 
I therefore tried another approach. Considering KDOL’s statement above regarding year-to –year comparisons, and formed a series by taking 12-month differences of the original series in Figure 1:
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Hopefully this series will be more amenable to analysis. A plot of the series is shown in Figure 6:
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Figure 6: Plot of 12-month differenced series.

The ACF and PACF of this differenced series is given in Figure 7:
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Figure 7: ACF and PACF of 12-month differenced series.
Attempting to fit a linear time trend to this differenced series resulted in a slope and intercept both near 0. Also, the ACF eventually dwindles to 0. This suggests that the new series is stationary, so no further differencing will be required. From the PACF, we might suppose that an AR(4) or even an AR(1) might be a suitable model.
 We’ll first test an AR(1) first, it being the simplest of the proposed models. Below is a diagnostic plot (Figure 8) and a QQ-plot of the residuals (Figure 9).
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Figure 8: Diagnostic plot of fitted AR(1) model.
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Figure 9: QQ-plot of residuals of fitted AR(1) model.

R came up with φ = 0.95917 for this fitted model. A Shapiro-Wilk test on the residuals yielded a test statistic of W = 0.9784 with a p​-value of 0.09623, which means we cannot reject the hypothesis that the residuals came from a normally-distributed population. The Ljung-Box statistics in the diagnostic plot leave something to be desired, however. We will try an AR(4) model to see if we can improve upon the fit. A diagnostic plot for this fit is shown in Figure 10, and the QQ-plot for the residuals is shown in Figure 11.
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Figure 10: Diagnostic plot for fitted AR(4) model.
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Figure 11: QQ-plot for fitted AR(4) model.

R produced the following values for the coefficients:
Coefficients:

            ar1        ar2        ar3         ar4  intercept

      0.9074248  0.2557082  0.1959359  -0.4272593  0.0020811

s.e.  0.0905229  0.1278916  0.1262821   0.0909847  0.0032073

sigma^2 estimated as 5.193857e-06:  log likelihood = 469.36,  aic = -928.73

A Shapiro-Wilk test on the residuals produced a test statistic of W = 0.9758 with a p-value of 0.06, which means we still cannot reject at 95% the hypothesis that the (standardized) residuals came from a normally-distributed population. More of the Ljung-Box statistics have p​-values exceeding 0.05 (barely), so that can be viewed as a small improvement. Finally, I decided to perform a runs test on the residuals. This showed observed runs of 50 with expected runs of 51.38 and a p-value of 0.861, providing further evidence that the residuals are independent. There is an outlier at lag 12 of the differenced series that could be dealt with by another procedure perhaps.
Although not ideal, we will proceed with the fitted AR(4) model to see if it does an adequate job of predicting the remaining 6 data points we held out of the fit.

Forecasting.  We’ll now compare the forecasts from the model with the actual values realized in the 6 months from May 2010 through November 2010. A plot from Excel 2010 containing both is shown as Figure 12.
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Figure 12: Actual versus predicted unemployment rates.

As one sees immediately, the projected values for the first two months agree quite nicely with the realized values, but starting with the third month out, the forecasts depart downward substantially from the realized values. The realized values even poke outside the confidence interval starting with the fifth month out.
Possible improvements. Certainly there was room for improvement upon the three models tested above. It could be that a more complicated model is necessary to capture all of the structure in the series
. The shock level change in the series that began with the “Great Recession” of 2008-2009 (and, some argue, continuing to the present time) may well be producing an effect that is throwing off any attempt at forecasting using these models. The outlier previously mentioned also came from this time period, and an adjustment for that may have been appropriate.
Appendix A – R code
# load the necessary library

library(TSA)

# get and organize the data

uedata.orig <- read.csv("ue-data.csv", header=TRUE)

attach(uedata.orig)

UERATE <- UE / FORCE

detach(uedata.orig)

# make the time series object

uets <- ts(UERATE, frequency=12, start=c(2001, 1))

# let's take our initial look

dev.new(width=6, height=2.25, pointsize=8)

plot(uets, type='o', col=3, main=c("Kansas unemployment rates, 2001-2010", sub="original series"))

abline(0,0)

dev.new(width=4, height=4, pointsize=8)

layout(1:2)

acf(as.vector(UERATE), main=c("Kansas unemployment rates - ACF"), lag.max=60, col=3)

pacf(as.vector(UERATE), main=c("Kansas unemployment rates - PACF"), lag.max=60, col=3)

# Make a first difference

uets.d1 <- diff(uets)

dev.new(width=6, height=2.25, pointsize=8)

plot(uets.d1, type='o', col=2, main=c("Kansas unemployment rates, 2001-2010", sub="after first difference"))

abline(0,0)

# check for linear time trend

Y <- as.vector(uets.d1)

uets.d1r <- lm(Y~time(Y))

abline(uets.d1r)

# look at the acf and pacf

dev.new(width=4, height=4, pointsize=8)

layout(1:2)

acf(uets.d1, lag.max=100, col=2, main=c("Kansas unemployment rates - ACF", sub="after first difference"))

pacf(uets.d1, lag.max=100, col=2, main=c("Kansas unemployment rates - PACF",sub="after first difference"))

# fit to the first model (1,1,1)x(1,0,1)_12 and see if it's any good

dev.new(width=4.875, height=4.5)

uets.fit1 <- arima(x=uets, order=c(1,1,1), seasonal=list(order=c(1,0,1), period=12))

tsdiag(uets.fit1)

dev.new(width=4, height=4, pointsize=8)

qqnorm(rstandard(uets.fit1))

qqline(rstandard(uets.fit1))

shapiro.test(rstandard(uets.fit1))

# that model wasn't so good, now make a 12 month seasonal diff

uets.d12 <- diff(uets, lag=12)

dev.new(width=6, height=2.25, pointsize=8)

plot(uets.d12, type='o', col=4, main=c("Kansas unemployment rates, 2001-2010", sub="after seasonal difference"))

abline(0,0)

# Check for linear time trend

Y <- as.vector(uets.d12)

uets.d12r <- lm(Y~time(Y))

abline(uets.d12r)

# Look at acf and pacf

dev.new(width=4, height=4, pointsize=8)

layout(1:2)

acf(uets.d12, lag.max=100, col=4, main=c("Kansas unemployment rates - ACF", sub="after seasonal difference"))

pacf(uets.d12, lag.max=100, col=4, main=c("Kansas unemployment rates - PACF",sub="after seasonal difference"))

# Now we're getting somewhere - try AR(1)

uets.fit1 <- arima(uets.d12, order=c(1,0,0))

dev.new(width=4.875, height=4.5)

tsdiag(uets.fit1, gof=60)

dev.new(width=4, height=4, pointsize=8)

qqnorm(rstandard(uets.fit1))

qqline(rstandard(uets.fit1))

shapiro.test(rstandard(uets.fit1))

uets.fit1

# try AR(4)

uets.fit2 <- arima(uets.d12, order=c(4,0,0))

dev.new(width=4.875, height=4.5)

tsdiag(uets.fit2, gof=60)

dev.new(width=4, height=4, pointsize=8)

qqnorm(rstandard(uets.fit2))

qqline(rstandard(uets.fit2))

shapiro.test(rstandard(uets.fit2))

runs(rstandard(uets.fit2))

uets.fit2

# AR(4) is good, now get the predictions and save them

uets.pred <- predict(uets.fit2, n.ahead=6)

uets.pred.pts <- uets.pred$pred

# Show last two years of stuff

ts.plot(window(cbind(uets.d12, uets.pred$pred), start=c(2009,1)), main=c(main="Prediction of seasonal difference", sub="since 1/1/2009"),lty=1:2, col=1:2)# we're gonna roll with AR(4)

# Build series of length 107 for differenced series - 101 points used plus 6 new ones

uets.d12.2 <- ts(seq(1:107), freq=12)

#Stick the original series in there, then put in the predictions
for (t in 1:101) uets.d12.2[t] <- uets.d12[t]

for (t in 102:107) uets.d12.2[t] <- uets.pred.pts[t-101]

# Build a new series with the full length of data, including 6 new pts

# and copy in the original points except for the last 6, then put on the predictions
uets.2 <- ts(seq(1:119), freq=12)

for (t in 1:113) uets.2[t] <- uets[t]

for (t in 114:119) uets.2[t] <- uets.d12.2[t-12] + uets.2[t-12]

# get constructed time series on same basis as original

uets.2.real <- ts(uets.2, start=c(2001,1), frequency=12)

# let's have a look - predicted values are dashed

ts.plot(cbind(uets, uets.2.real), lty=1:2)

# let's just show since 1/2009

ts.plot(window(cbind(uets, uets.2.real), start=c(2009,1)), main=c(main="Predicted values of Kansas unemployment rates", sub="since 2009"), lty=1:2)

# get the numbers and put them in Excel

uets.pred

uets.2.real

window(uets.2.real, start=c(2010,6))

� KDOL Labor Information Center, � HYPERLINK "http://klic.dol.ks.gov/analyzer/startanalyzer.asp" �http://klic.dol.ks.gov/analyzer/startanalyzer.asp�. 


� KDOL, “What's the difference between seasonally adjusted and unadjusted numbers?”, � HYPERLINK "http://www.dol.ks.gov/LMIS/seasonally.htmlhttp://www.dol.ks.gov/LMIS/seasonally.html" �http://www.dol.ks.gov/LMIS/seasonally.htmlhttp://www.dol.ks.gov/LMIS/seasonally.html�. 


� The auto.arima() function in the forecast package of R suggested ARIMA(1,1,2)x(1,0,1)12 based on AIC. Even that wasn’t all that great.
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