Fitting a Seasonal Time Series Model to the Annual Minnesota Ruffed Grouse Harvest
Introduction

The ruffed grouse population in Minnesota has produced a rather curious trend over the years.  Numbers of grouse tend to oscillate over ten year intervals.  Since 1948 peaks in grouse populations have been recorded every ten years with a contrasting population low occurring five years after the peak.  Furthermore, ‘superpeaks’ appear to occur every twenty years where exceptionally high grouse numbers are recorded.  This phenomenon is widely studied; however, the exact causes have yet to be agreed upon by scientists.  While this pattern offers a degree of predictability on its own, it certainly provides an interesting time series to study. 
This paper will attempt to model the ruffed grouse populations using basic time series techniques.  Due to the nature of the selected time series this paper will focus largely on seasonal time series techniques.  Other topics such as stationarity, model selection, forecasting and model diagnostics will also be explored.  Data was gathered from the Minnesota DNR and Sportsmen for Change websites.
  Annual grouse harvest data from 1948-2002 will be studied.  Harvest levels of ruffed grouse per year will be used as an estimate for the population.  This is not ideal since outside variables such as number of hunters have been introduced into the data, however, it should provide a sufficient basis for the time series analysis.
Stationarity

A graph of the data shows the seasonality of the ruffed grouse harvest.  Peaks occur at approximate ten year intervals.  The ‘superpeaks’ are also apparent every about every twenty years.  The data was checked for any trends using a twenty-year moving average.  The trend line shows a slight increase in the average harvest numbers over time.  This indicates that first differences should likely be used to remove the impact from the trend.
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The sample autocorrelation function was examined to determine if the data is stationary.  The seasonality of the data is again apparent.  In addition to the high ACF at lag 1, significant autocorrelations also occur at lag 5, lag 14, and lag 19.  The critical bounds for significant autocorrelation coefficients are ±2/√n ~= ±.27.  It is difficult to determine if this series is stationary.  There is a clear autoregressive component since the ACFs oscillate around 0 and have peaks at approximate 5 year intervals.  The ACFs do appear to decrease towards zero, with no significant autocorrelations appearing after lag 20.  This series is potentially explained by a Multiplicative Seasonal ARMA model as described in the textbook on pages 230-232.  An ARMA(0,1)x(1,0)5 seems to be a potential candidate since the data shows the autoregressive trend as described earlier, but also may contain a moving average term since autocorrelations are reasonably high at each peak for lags of ±1 (ex. lag 4 and lag 6).
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Because of the need to de-trend the data, the ACFs of first differences were also examined.  The analysis of the original series seems to hold for the first differences.  A multiplicative seasonal ARMA model also appears to be a good candidate for the first differences.
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Since there is still some question as to whether both the original series and the first differences are stationary, seasonal differences were also examined.  After taking first differences, seasonal differences were taken at 5 year lags.  The ACFs of first and seasonal differences does not appear to offer much improvement to the first differences only.  At this point, the best option seems to be to move forward with the first differences of the grouse harvest.  This option corrects for the trend present in the original data while retaining as much information as possible.  We will assume that the first differences are stationary and continue with model specification as such.
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Model Specification

Through the examination of the sample autocorrelation functions, it was determined that first differences provided the best series for which to specify a model.  The first differences of the grouse harvest are shown in the graph below.  Some of the seasonality has been removed by taking first differences, however, as we know from analysis of the ACFs, significant correlation is still present at lags with approximately 5 year intervals.
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As was noted earlier, the ACFs of the first differences seem to point to an autoregressive component since the autocorrelations oscillate around 0 and decrease with higher lags.  A model with autoregressive characteristics seems to be the best choice.  Additionally, the high lag 1 correlation and the relatively high correlations at lags 4 and 6 point to a multiplicative seasonal model.  Several AR models will be specified for purposes of comparison.
Models will be specified for the differenced time series so the models will be described as they apply to the first differences, rather than as they apply to the original data (models of the form ARMA(0,1) will be described rather than ARIMA(0,1,1)).

The likely candidates for models with autoregressive components are listed below.
1.  AR(1):  Yt = φYt-1 + et
2. AR(5):  Yt = φ1Yt-1 + φ2Yt-2 + φ3Yt-3 + φ4Yt-4 + φ5Yt-5 + et 

3. AR(1) 5:  Yt = ΦYt-5 + et
4. ARMA(0,1)x(1,0)5:  Yt = ΦYt-5 + v – θet-1
5. ARMA(0,1)x(1,0) 5:  Yt = Φ Yt-5 + φYt-1 + et
6. ARMA(1,1):  Yt = φYt-1 + et – θet-1
Models without autoregressive terms were also analyzed although they are unlikely candidates for this series.

7.  MA(1):  Yt = et – θ et-1
8. MA(1) 5:  Yt = et – Θet-5
9. ARMA(0,1)x(0,1) 5:  Yt = et – θet-1 – Θ et-5 + θΘ et-6  
Parameters for the following models were determined using the Excel Regression tool: 1,2,3,5.  The parameters for models 4,6,7,8,9 were determined using the method of moments.  Where the δ was not provided from the Excel Regression tool, the sample mean was considered.  The solved δ was -1.39 which is approximately equal to 0, so 0 was assumed.
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Model Diagnostics

A number of model diagnostic techniques were applied to assess the validity of the models that were specified in the previous section.

Model ACFs

As a first step, the calculated ACFs for each model were compared to the sample ACFs.  Many of the calculated ACFs are exactly equal to the sample ACF as a result of using the method of moments to estimate the parameters.  It is clear that the seasonal models give a better representation of the sample ACFs for longer lag times.  The ACFs for even the autoregressive seasonal models decrease to zero faster than the sample ACFs, which could indicate that the original time series was indeed nonstationary.
Model ACFs
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Sum of Squared Errors
One way to predict which of our models will generate the minimum forecast error is to see which of them has the smallest Error Sum of Squares (ESS) when fitting the model to our actual data. Let ŷt symbolize the fitted value predicted by the model for a certain observation, and Lt symbolize the actual value for that same observation. Then ESS is the sum of squared differences (Lt - ŷt)2 for each observation in that model.

The sum of squared errors was calculated for the ex-post forecasts for the years 1948-2002.  The sum of squared errors for each model is ranked below.

It is not surprising that the seasonal models with an autoregressive component generally have the lowest ESS.  Furthermore, the models with strictly MA components have generally high ESS.  This analysis seems to point to the AR(5) model as the best fit for the time series, however, this model introduces more complexity since it requires parameters for lags 1-5.  The principal of parsimony states that the least complex model offering the best fit should be used.

Sum of Squared Errors
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Autoregressive Diagnostics

For the models with purely autoregressive parameters, the Excel Regression tool was used to develop further diagnostics.  The Adjusted R2 is provided by the Regression tool and demonstrates the goodness of fit for a particular model. The Durbin-Watson statistic and the Box-Pierce Q statistic analyze the residuals of the forecasted values and check that an approximate white noise process is formed.  The Regression tool provides the residual values, facilitating these additional diagnostics.
The adjusted R squared for the autoregressive models shows a generally poor fit for the forecasted series.  The highest R2 value achieved is .245 which is low considering a value of close to 1 is desired.  Among the autoregressive models tested, the AR(5) resulted in the highest R squared, however, the seasonal multiplicative and seasonal AR models are reasonably close in r squared values.  As expected the AR(1) model offers a very poor fit for this series.
Adjusted R Squared
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The Durbin-Watson statistic tests the residuals of an autoregressive model to determine if they form white noise process.  A value close to 2 is desired, meaning that the residuals in fact are likely to be a white noise process.  The D-W statistics are shown below for the four autoregressive models.  The AR(5) model has the D-W statistic closest to 2, however, the AR(1) and seasonal multiplicative model also are reasonably close.  The appropriateness of the D-W statistic for diagnosing a seasonal model is in question since the statistic is meant to test for a lag of 1.  Without further background on the application of the D-W statistic firm conclusions cannot be made.
Durbin-Watson Statistic
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The Box-Pierce Q statistic also tests for white noise within the residual values, but provides analysis for all lag times.  The BPQS is compared to the corresponding Chi-Squared value for each lag.  A BPQS that is less than the corresponding Chi-Squared value indicates that the residuals likely form white noise.

The BPQS values for the autoregressive models are shown below.  The only model with BPQS lower than the Chi-squared value for all lags is the AR(5) model.  The AR(1)5 model appears to be the worst model since the BPQS values are the highest among any model.  As with the D-W model it is questionable as to whether the Box-Pierce test was correctly applied since this is a seasonal model.  The results seem to indicate that all models are generally poor due to the high values of the BPQS statistics.  This could imply poor model specification, or result from the initial time series being nonstationary.  It is also possible that the test was applied incorrectly for models of this type.  Without further background on the application of the Box Pierce test, firm conclusions cannot be made.
Box Pierce Q Statistic
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Forecasting

Three models were selected as the best candidates for forecasting the first differences:  the AR(5), AR(1)5, and ARMA(1,0)x(1,0)5.  The forecasts are compared to the sample first differences below.  
Each of the forecasts generally resembles the sample first differences, and there is no clear favorite.  The residuals of the first differences were also graphed below.  The residuals of the AR(5) model seem to be centered more closely around zero, but it is difficult to draw any firm conclusions from the graph.
The forecasted first differences were used to construct forecasts of the grouse harvest.  These graphs along with the sample grouse harvest are shown below.  Again, each of the forecasts resembles the sample, and one forecast does not stand out among the others.  It is interesting that there is clear correlation among the residuals of the harvest forecasts.
The sum of squared errors was examined for the harvest forecasts.  Interestingly, the ARMA(1,0)x(1,0)5 model has the lowest ESS and the AR(5) model has the highest which is quite different than the ESS of the first difference forecasts.

1st Differences and Grouse Harvest Forecasts with Residuals[image: image12.emf]-500
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Sum of Squared Errors
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Conclusion

We began our analysis of the historic ruffed grouse population in hopes that a basic time series model could be found to forecast the population.  Due to the seasonal trend of the grouse population a seasonal model was expected to produce the best results.  Examination of the grouse harvest data revealed an increasing trend in the grouse harvest.  In hopes of producing a stationary time series, first differences were taken and used as the basis for model specification.  It is still unclear if the resulting series was stationary.  Analysis of the autocorrelation functions confirmed the inherent seasonality and suggested an autoregressive model.  Autocorrelations decreased towards zero for increasing lags, however, significant autocorrelations remained for lags as high as twenty.  This could be an indication of a nonstationary series.  As an additional check, the seasonal and first differences of the harvest data were examined.  The resulting series did not offer strong evidence of a stationary model and seemed to offer little improvement over first differences.

Models were specified for the first differences of the harvest data, with particular focus placed on seasonal models with an autoregressive component.

Model diagnostics indicated that the models offered a generally poor fit for the series.  Several explanations for this result are possible:

· The first differenced series may be nonstationary.  

· The model diagnostics were applied incorrectly due to the seasonal nature of the series.  

· The models considered may be too simplistic and more sophisticated models may exist that provide a better fit.
Three seasonal models with autoregressive components were selected as the best candidates for the forecast of first differences: AR(5), AR5, and ARMA(1,0)x(1,0)5.  The model diagnostics seemed to point to the AR(5) as the best fit.  This model had the lowest ESS, highest R squared, a D-W statistic close to 2, and was the only model with BPQS that were less than critical values at all lags.  This was the most complex model examined, however, requiring five parameters for model specification.  The principle of parsimony states that models should be as simple as possible.

The three seasonal models with autoregressive components all produced forecasts that generally resembled actual first differences.  Visual examination of the forecasts and residuals did not reveal a best choice.  Furthermore, using the first differences to produce forecasts of the harvest data also resulted in similar results among the models, all resembling the sample data.  No conclusive favorite was determined from visual inspection of these forecasts either.
It is likely that the correct specification of a model to forecast the annual grouse harvest is beyond the scope of the time series techniques used for this analysis.
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